Upload folder using huggingface_hub
Browse files- requirements.txt +1 -1
- run.ipynb +1 -1
- run.py +1 -3
requirements.txt
CHANGED
|
@@ -1,2 +1,2 @@
|
|
| 1 |
|
| 2 |
-
https://gradio-main-build.s3.amazonaws.com/
|
|
|
|
| 1 |
|
| 2 |
+
https://gradio-main-build.s3.amazonaws.com/b4173886bab24d47bef9936a96801ce6ac6aba0e/gradio-3.36.0-py3-none-any.whl
|
run.ipynb
CHANGED
|
@@ -1 +1 @@
|
|
| 1 |
-
{"cells": [{"cell_type": "markdown", "id": 302934307671667531413257853548643485645, "metadata": {}, "source": ["# Gradio Demo: annotatedimage_component"]}, {"cell_type": "code", "execution_count": null, "id": 272996653310673477252411125948039410165, "metadata": {}, "outputs": [], "source": ["!pip install -q gradio "]}, {"cell_type": "code", "execution_count": null, "id": 288918539441861185822528903084949547379, "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "import pathlib\n", "from PIL import Image\n", "import numpy as np\n", "import urllib.request\n", "\n", "\n", "source_dir = pathlib.Path(__file__).parent\n", "\n", "urllib.request.urlretrieve(\n", " 'https://gradio-builds.s3.amazonaws.com/demo-files/base.png',\n", " str(source_dir / \"base.png\")\n", ")\n", "urllib.request.urlretrieve(\n", " \"https://gradio-builds.s3.amazonaws.com/demo-files/buildings.png\",\n", " str(source_dir / \"buildings.png\")\n", ")\n", "\n", "base_image = Image.open(str(source_dir / \"base.png\"))\n", "building_image = Image.open(str(source_dir / \"buildings.png\"))\n", "\n", "# Create segmentation mask\n", "building_image = np.asarray(building_image)[:, :, -1] > 0\n", "\n", "
|
|
|
|
| 1 |
+
{"cells": [{"cell_type": "markdown", "id": 302934307671667531413257853548643485645, "metadata": {}, "source": ["# Gradio Demo: annotatedimage_component"]}, {"cell_type": "code", "execution_count": null, "id": 272996653310673477252411125948039410165, "metadata": {}, "outputs": [], "source": ["!pip install -q gradio "]}, {"cell_type": "code", "execution_count": null, "id": 288918539441861185822528903084949547379, "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "import pathlib\n", "from PIL import Image\n", "import numpy as np\n", "import urllib.request\n", "\n", "\n", "source_dir = pathlib.Path(__file__).parent\n", "\n", "urllib.request.urlretrieve(\n", " 'https://gradio-builds.s3.amazonaws.com/demo-files/base.png',\n", " str(source_dir / \"base.png\")\n", ")\n", "urllib.request.urlretrieve(\n", " \"https://gradio-builds.s3.amazonaws.com/demo-files/buildings.png\",\n", " str(source_dir / \"buildings.png\")\n", ")\n", "\n", "base_image = Image.open(str(source_dir / \"base.png\"))\n", "building_image = Image.open(str(source_dir / \"buildings.png\"))\n", "\n", "# Create segmentation mask\n", "building_image = np.asarray(building_image)[:, :, -1] > 0\n", "\n", "with gr.Blocks() as demo:\n", " gr.AnnotatedImage(\n", " value=(base_image, [(building_image, \"buildings\")]),\n", " height=500,\n", " )\n", "\n", "demo.launch()"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
|
run.py
CHANGED
|
@@ -22,9 +22,7 @@ building_image = Image.open(str(source_dir / "buildings.png"))
|
|
| 22 |
# Create segmentation mask
|
| 23 |
building_image = np.asarray(building_image)[:, :, -1] > 0
|
| 24 |
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
with gr.Blocks(css=css) as demo:
|
| 28 |
gr.AnnotatedImage(
|
| 29 |
value=(base_image, [(building_image, "buildings")]),
|
| 30 |
height=500,
|
|
|
|
| 22 |
# Create segmentation mask
|
| 23 |
building_image = np.asarray(building_image)[:, :, -1] > 0
|
| 24 |
|
| 25 |
+
with gr.Blocks() as demo:
|
|
|
|
|
|
|
| 26 |
gr.AnnotatedImage(
|
| 27 |
value=(base_image, [(building_image, "buildings")]),
|
| 28 |
height=500,
|