Spaces:
Running
Running
# type: ignore | |
from __future__ import annotations | |
from gradio import ChatMessage | |
from transformers.agents import ReactCodeAgent, agent_types | |
from typing import Generator | |
def pull_message(step_log: dict): | |
if step_log.get("rationale"): | |
yield ChatMessage( | |
role="assistant", content=step_log["rationale"] | |
) | |
if step_log.get("tool_call"): | |
used_code = step_log["tool_call"]["tool_name"] == "code interpreter" | |
content = step_log["tool_call"]["tool_arguments"] | |
if used_code: | |
content = f"```py\n{content}\n```" | |
yield ChatMessage( | |
role="assistant", | |
metadata={"title": f"🛠️ Used tool {step_log['tool_call']['tool_name']}"}, | |
content=content, | |
) | |
if step_log.get("observation"): | |
yield ChatMessage( | |
role="assistant", content=f"```\n{step_log['observation']}\n```" | |
) | |
if step_log.get("error"): | |
yield ChatMessage( | |
role="assistant", | |
content=str(step_log["error"]), | |
metadata={"title": "💥 Error"}, | |
) | |
def stream_from_transformers_agent( | |
agent: ReactCodeAgent, prompt: str | |
) -> Generator[ChatMessage, None, ChatMessage | None]: | |
"""Runs an agent with the given prompt and streams the messages from the agent as ChatMessages.""" | |
class Output: | |
output: agent_types.AgentType | str = None | |
step_log = None | |
for step_log in agent.run(prompt, stream=True): | |
if isinstance(step_log, dict): | |
for message in pull_message(step_log): | |
print("message", message) | |
yield message | |
Output.output = step_log | |
if isinstance(Output.output, agent_types.AgentText): | |
yield ChatMessage( | |
role="assistant", content=f"**Final answer:**\n```\n{Output.output.to_string()}\n```") # type: ignore | |
elif isinstance(Output.output, agent_types.AgentImage): | |
yield ChatMessage( | |
role="assistant", | |
content={"path": Output.output.to_string(), "mime_type": "image/png"}, # type: ignore | |
) | |
elif isinstance(Output.output, agent_types.AgentAudio): | |
yield ChatMessage( | |
role="assistant", | |
content={"path": Output.output.to_string(), "mime_type": "audio/wav"}, # type: ignore | |
) | |
else: | |
return ChatMessage(role="assistant", content=Output.output) | |