NYC-Airbnb-Map / app.py
dawood's picture
dawood HF staff
Create new file
1098372
raw
history blame
2.08 kB
from cgitb import text
import os
import gradio as gr
import pandas as pd
import plotly.graph_objects as go
MAPBOX_TOKEN = os.environ.get('MAPBOX_TOKEN')
df = pd.read_csv("AB_NYC_2019.csv")
def update_map(min_price, max_price, boroughs):
new_df = df[(df['neighbourhood_group'].isin(boroughs)) &
(df['price'] > min_price) & (df['price'] < max_price)]
names = df["name"].tolist()
prices = df["price"].tolist()
text_list = [(names[i], prices[i]) for i in range(0, len(names))]
fig = go.Figure(go.Scattermapbox(
customdata=text_list,
lat=new_df['latitude'].tolist(),
lon=new_df['longitude'].tolist(),
mode='markers',
marker=go.scattermapbox.Marker(
size=6
),
hoverinfo="text",
hovertemplate =
'<br><b>Name</b>: %{customdata[0]}'+
'<br><b>Price</b>: $%{customdata[1]}<br>'
))
fig.update_layout(
autosize=True,
hovermode='closest',
mapbox=dict(
accesstoken=MAPBOX_TOKEN,
bearing=0,
center=go.layout.mapbox.Center(
lat=40.67,
lon=-73.90
),
pitch=0,
zoom=9
),
)
return fig
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
min_price = gr.Number(value=0, label="Minimum Price")
max_price = gr.Number(value=1000, label="Maximum Price")
boroughs = gr.CheckboxGroup(["Queens", "Brooklyn", "Manhattan", "Bronx", "Staten Island"], label="Select Boroughs:")
with gr.Column():
with gr.Box():
map = gr.Plot()
min_price.submit(update_map, [min_price, max_price, boroughs], map)
max_price.submit(update_map, [min_price, max_price, boroughs], map)
max_price.change(update_map, [min_price, max_price, boroughs], map)
boroughs.change(update_map, [min_price, max_price, boroughs], map)
demo.load(update_map, [min_price, max_price, boroughs], map)
demo.launch()