|
|
|
|
|
|
|
|
|
|
|
import unittest |
|
|
|
import tests.utils as test_utils |
|
import torch |
|
from fairseq.data import TokenBlockDataset |
|
|
|
|
|
class TestTokenBlockDataset(unittest.TestCase): |
|
def _build_dataset(self, data, **kwargs): |
|
sizes = [len(x) for x in data] |
|
underlying_ds = test_utils.TestDataset(data) |
|
return TokenBlockDataset(underlying_ds, sizes, **kwargs) |
|
|
|
def test_eos_break_mode(self): |
|
data = [ |
|
torch.tensor([5, 4, 3, 2, 1], dtype=torch.long), |
|
torch.tensor([1], dtype=torch.long), |
|
torch.tensor([8, 7, 6, 1], dtype=torch.long), |
|
] |
|
ds = self._build_dataset(data, block_size=None, pad=0, eos=1, break_mode="eos") |
|
self.assertEqual(ds[0].tolist(), [5, 4, 3, 2, 1]) |
|
self.assertEqual(ds[1].tolist(), [1]) |
|
self.assertEqual(ds[2].tolist(), [8, 7, 6, 1]) |
|
|
|
data = [ |
|
torch.tensor([5, 4, 3, 2, 1], dtype=torch.long), |
|
torch.tensor([8, 7, 6, 1], dtype=torch.long), |
|
torch.tensor([1], dtype=torch.long), |
|
] |
|
ds = self._build_dataset(data, block_size=None, pad=0, eos=1, break_mode="eos") |
|
self.assertEqual(ds[0].tolist(), [5, 4, 3, 2, 1]) |
|
self.assertEqual(ds[1].tolist(), [8, 7, 6, 1]) |
|
self.assertEqual(ds[2].tolist(), [1]) |
|
|
|
def test_block_break_mode(self): |
|
data = [ |
|
torch.tensor([5, 4, 3, 2, 1], dtype=torch.long), |
|
torch.tensor([8, 7, 6, 1], dtype=torch.long), |
|
torch.tensor([9, 1], dtype=torch.long), |
|
] |
|
ds = self._build_dataset(data, block_size=3, pad=0, eos=1, break_mode="none") |
|
self.assertEqual(ds[0].tolist(), [5, 4, 3]) |
|
self.assertEqual(ds[1].tolist(), [2, 1, 8]) |
|
self.assertEqual(ds[2].tolist(), [7, 6, 1]) |
|
self.assertEqual(ds[3].tolist(), [9, 1]) |
|
|
|
def test_complete_break_mode(self): |
|
data = [ |
|
torch.tensor([5, 4, 3, 2, 1], dtype=torch.long), |
|
torch.tensor([8, 7, 6, 1], dtype=torch.long), |
|
torch.tensor([9, 1], dtype=torch.long), |
|
] |
|
ds = self._build_dataset( |
|
data, block_size=6, pad=0, eos=1, break_mode="complete" |
|
) |
|
self.assertEqual(ds[0].tolist(), [5, 4, 3, 2, 1]) |
|
self.assertEqual(ds[1].tolist(), [8, 7, 6, 1, 9, 1]) |
|
|
|
data = [ |
|
torch.tensor([4, 3, 2, 1], dtype=torch.long), |
|
torch.tensor([5, 1], dtype=torch.long), |
|
torch.tensor([1], dtype=torch.long), |
|
torch.tensor([6, 1], dtype=torch.long), |
|
] |
|
ds = self._build_dataset( |
|
data, block_size=3, pad=0, eos=1, break_mode="complete" |
|
) |
|
self.assertEqual(ds[0].tolist(), [4, 3, 2, 1]) |
|
self.assertEqual(ds[1].tolist(), [5, 1, 1]) |
|
self.assertEqual(ds[2].tolist(), [6, 1]) |
|
|
|
def test_4billion_tokens(self): |
|
"""Regression test for numpy type promotion issue https://github.com/numpy/numpy/issues/5745""" |
|
data = [torch.tensor(list(range(10000)), dtype=torch.long)] * 430000 |
|
ds = self._build_dataset( |
|
data, block_size=6, pad=0, eos=1, break_mode="complete" |
|
) |
|
ds[-1] |
|
start, end = ds.slice_indices[-1] |
|
assert end > 4294967295 |
|
assert not isinstance( |
|
end + 1, float |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
unittest.main() |
|
|