gradio-pr-bot's picture
Upload folder using huggingface_hub
6833106 verified
raw
history blame
5.61 kB
import gradio as gr
from datetime import datetime
import os
import random
import string
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
def random_plot():
start_year = 2020
x = np.arange(start_year, start_year + 5)
year_count = x.shape[0]
plt_format = "-"
fig = plt.figure()
ax = fig.add_subplot(111)
series = np.arange(0, year_count, dtype=float)
series = series**2
series += np.random.rand(year_count)
ax.plot(x, series, plt_format)
return fig
images = [
"https://images.unsplash.com/photo-1507003211169-0a1dd7228f2d?ixlib=rb-1.2.1&ixid=MnwxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8&auto=format&fit=crop&w=387&q=80",
"https://images.unsplash.com/photo-1554151228-14d9def656e4?ixlib=rb-1.2.1&ixid=MnwxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8&auto=format&fit=crop&w=386&q=80",
"https://images.unsplash.com/photo-1542909168-82c3e7fdca5c?ixlib=rb-1.2.1&ixid=MnwxMjA3fDB8MHxzZWFyY2h8MXx8aHVtYW4lMjBmYWNlfGVufDB8fDB8fA%3D%3D&w=1000&q=80",
]
file_dir = os.path.join(os.path.dirname(__file__), "..", "kitchen_sink", "files")
model3d_dir = os.path.join(os.path.dirname(__file__), "..", "model3D", "files")
highlighted_text_output_1 = [
{
"entity": "I-LOC",
"score": 0.9988978,
"index": 2,
"word": "Chicago",
"start": 5,
"end": 12,
},
{
"entity": "I-MISC",
"score": 0.9958592,
"index": 5,
"word": "Pakistani",
"start": 22,
"end": 31,
},
]
highlighted_text_output_2 = [
{
"entity": "I-LOC",
"score": 0.9988978,
"index": 2,
"word": "Chicago",
"start": 5,
"end": 12,
},
{
"entity": "I-LOC",
"score": 0.9958592,
"index": 5,
"word": "Pakistan",
"start": 22,
"end": 30,
},
]
highlighted_text = "Does Chicago have any Pakistani restaurants"
def random_model3d():
model_3d = random.choice(
[os.path.join(model3d_dir, model) for model in os.listdir(model3d_dir) if model != "source.txt"]
)
return model_3d
components = [
gr.Textbox(value=lambda: datetime.now(), label="Current Time"),
gr.Number(value=lambda: random.random(), label="Random Percentage"),
gr.Slider(minimum=0, maximum=100, randomize=True, label="Slider with randomize"),
gr.Slider(
minimum=0,
maximum=1,
value=lambda: random.random(),
label="Slider with value func",
),
gr.Checkbox(value=lambda: random.random() > 0.5, label="Random Checkbox"),
gr.CheckboxGroup(
choices=["a", "b", "c", "d"],
value=lambda: random.choice(["a", "b", "c", "d"]),
label="Random CheckboxGroup",
),
gr.Radio(
choices=list(string.ascii_lowercase),
value=lambda: random.choice(string.ascii_lowercase),
),
gr.Dropdown(
choices=["a", "b", "c", "d", "e"],
value=lambda: random.choice(["a", "b", "c"]),
),
gr.Image(
value=lambda: random.choice(images)
),
gr.Video(value=lambda: os.path.join(file_dir, "world.mp4")),
gr.Audio(value=lambda: os.path.join(file_dir, "cantina.wav")),
gr.File(
value=lambda: random.choice(
[os.path.join(file_dir, img) for img in os.listdir(file_dir)]
)
),
gr.Dataframe(
value=lambda: pd.DataFrame({"random_number_rows": range(5)}, columns=["one", "two", "three"])
),
gr.ColorPicker(value=lambda: random.choice(["#000000", "#ff0000", "#0000FF"])),
gr.Label(value=lambda: random.choice(["Pedestrian", "Car", "Cyclist"])),
gr.HighlightedText(
value=lambda: random.choice(
[
{"text": highlighted_text, "entities": highlighted_text_output_1},
{"text": highlighted_text, "entities": highlighted_text_output_2},
]
),
),
gr.JSON(value=lambda: random.choice([{"a": 1}, {"b": 2}])),
gr.HTML(
value=lambda: random.choice(
[
'<p style="color:red;">I am red</p>',
'<p style="color:blue;">I am blue</p>',
]
)
),
gr.Gallery(
value=lambda: images
),
gr.Model3D(value=random_model3d),
gr.Plot(value=random_plot),
gr.Markdown(value=lambda: f"### {random.choice(['Hello', 'Hi', 'Goodbye!'])}"),
]
def evaluate_values(*args):
are_false = []
for a in args:
if isinstance(a, (pd.DataFrame, np.ndarray)):
are_false.append(not a.any().any())
elif isinstance(a, str) and a.startswith("#"):
are_false.append(a == "#000000")
else:
are_false.append(not a)
return all(are_false)
with gr.Blocks() as demo:
for i, component in enumerate(components):
component.label = f"component_{str(i).zfill(2)}"
component.render()
clear = gr.ClearButton(value="Clear", components=components)
result = gr.Textbox(label="Are all cleared?")
hide = gr.Button(value="Hide")
reveal = gr.Button(value="Reveal")
clear_button_and_components = components + [clear]
hide.click(
lambda: [c.__class__(visible=False) for c in clear_button_and_components],
inputs=[],
outputs=clear_button_and_components
)
reveal.click(
lambda: [c.__class__(visible=True) for c in clear_button_and_components],
inputs=[],
outputs=clear_button_and_components
)
get_value = gr.Button(value="Get Values")
get_value.click(evaluate_values, components, result)
if __name__ == "__main__":
demo.launch()