Spaces:
Sleeping
Sleeping
import gradio as gr | |
import numpy as np | |
import time | |
import os | |
from PIL import Image | |
import requests | |
from io import BytesIO | |
def create_gif(images): | |
pil_images = [] | |
for image in images: | |
if isinstance(image, str): | |
response = requests.get(image) | |
image = Image.open(BytesIO(response.content)) | |
else: | |
image = Image.fromarray((image * 255).astype(np.uint8)) | |
pil_images.append(image) | |
fp_out = os.path.join(os.path.dirname(__file__), "image.gif") | |
img = pil_images.pop(0) | |
img.save(fp=fp_out, format='GIF', append_images=pil_images, | |
save_all=True, duration=400, loop=0) | |
return fp_out | |
def fake_diffusion(steps): | |
images = [] | |
for _ in range(steps): | |
time.sleep(1) | |
image = np.random.random((600, 600, 3)) | |
images.append(image) | |
yield image, gr.Image(visible=False) | |
time.sleep(1) | |
image = "https://gradio-builds.s3.amazonaws.com/diffusion_image/cute_dog.jpg" | |
images.append(image) | |
gif_path = create_gif(images) | |
yield image, gr.Image(value=gif_path, visible=True) | |
demo = gr.Interface(fake_diffusion, | |
inputs=gr.Slider(1, 10, 3), | |
outputs=["image", gr.Image(label="All Images", visible=False)]) | |
demo.queue() | |
if __name__ == "__main__": | |
demo.launch() | |