mini-omni / app.py
gpt-omni
update
3811d15
raw
history blame
11.7 kB
"""A simple web interactive chat demo based on gradio."""
import os
import time
import gradio as gr
import numpy as np
import spaces
import torch
import os
import lightning as L
import torch
import time
from snac import SNAC
from litgpt import Tokenizer
from litgpt.utils import (
num_parameters,
)
from litgpt.generate.base import (
generate_AA,
generate_ASR,
generate_TA,
generate_TT,
generate_AT,
generate_TA_BATCH,
)
from typing import Any, Literal, Optional
import soundfile as sf
from litgpt.model import GPT, Config
from lightning.fabric.utilities.load import _lazy_load as lazy_load
from utils.snac_utils import layershift, reconscruct_snac, reconstruct_tensors, get_time_str
from utils.snac_utils import get_snac
import whisper
from tqdm import tqdm
from huggingface_hub import snapshot_download
from litgpt.generate.base import sample
device = "cuda" if torch.cuda.is_available() else "cpu"
ckpt_dir = "./checkpoint"
streaming_output = True
OUT_CHUNK = 4096
OUT_RATE = 24000
OUT_CHANNELS = 1
# TODO
text_vocabsize = 151936
text_specialtokens = 64
audio_vocabsize = 4096
audio_specialtokens = 64
padded_text_vocabsize = text_vocabsize + text_specialtokens
padded_audio_vocabsize = audio_vocabsize + audio_specialtokens
_eot = text_vocabsize
_pad_t = text_vocabsize + 1
_input_t = text_vocabsize + 2
_answer_t = text_vocabsize + 3
_asr = text_vocabsize + 4
_eoa = audio_vocabsize
_pad_a = audio_vocabsize + 1
_input_a = audio_vocabsize + 2
_answer_a = audio_vocabsize + 3
_split = audio_vocabsize + 4
def download_model(ckpt_dir):
repo_id = "gpt-omni/mini-omni"
snapshot_download(repo_id, local_dir=ckpt_dir, revision="main")
if not os.path.exists(ckpt_dir):
print(f"checkpoint directory {ckpt_dir} not found, downloading from huggingface")
download_model(ckpt_dir)
snacmodel = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").eval().to(device)
whispermodel = whisper.load_model("small").to(device)
whispermodel.eval()
text_tokenizer = Tokenizer(ckpt_dir)
# fabric = L.Fabric(devices=1, strategy="auto")
config = Config.from_file(ckpt_dir + "/model_config.yaml")
config.post_adapter = False
model = GPT(config, device=device)
state_dict = lazy_load(ckpt_dir + "/lit_model.pth")
model.load_state_dict(state_dict, strict=True)
model = model.to(device)
model.eval()
def get_input_ids_whisper_ATBatch(mel, leng, whispermodel, device):
# with torch.no_grad():
mel = mel.unsqueeze(0).to(device)
# audio_feature = whisper.decode(whispermodel,mel, options).audio_features
audio_feature = whispermodel.embed_audio(mel)[0][:leng]
T = audio_feature.size(0)
input_ids_AA = []
for i in range(7):
input_ids_item = []
input_ids_item.append(layershift(_input_a, i))
input_ids_item += [layershift(_pad_a, i)] * T
input_ids_item += [(layershift(_eoa, i)), layershift(_answer_a, i)]
input_ids_AA.append(torch.tensor(input_ids_item))
input_id_T = torch.tensor([_input_t] + [_pad_t] * T + [_eot, _answer_t])
input_ids_AA.append(input_id_T)
input_ids_AT = []
for i in range(7):
input_ids_item = []
input_ids_item.append(layershift(_input_a, i))
input_ids_item += [layershift(_pad_a, i)] * T
input_ids_item += [(layershift(_eoa, i)), layershift(_pad_a, i)]
input_ids_AT.append(torch.tensor(input_ids_item))
input_id_T = torch.tensor([_input_t] + [_pad_t] * T + [_eot, _answer_t])
input_ids_AT.append(input_id_T)
input_ids = [input_ids_AA, input_ids_AT]
stacked_inputids = [[] for _ in range(8)]
for i in range(2):
for j in range(8):
stacked_inputids[j].append(input_ids[i][j])
stacked_inputids = [torch.stack(tensors) for tensors in stacked_inputids]
return torch.stack([audio_feature, audio_feature]), stacked_inputids
def next_token_batch(
model: GPT,
audio_features: torch.tensor,
input_ids: list,
whisper_lens: int,
task: list,
input_pos: torch.Tensor,
**kwargs: Any,
) -> torch.Tensor:
input_pos = input_pos.to(model.device)
input_ids = [input_id.to(model.device) for input_id in input_ids]
logits_a, logit_t = model(
audio_features, input_ids, input_pos, whisper_lens=whisper_lens, task=task
)
for i in range(7):
logits_a[i] = logits_a[i][0].unsqueeze(0)
logit_t = logit_t[1].unsqueeze(0)
next_audio_tokens = []
for logit_a in logits_a:
next_a = sample(logit_a, **kwargs).to(dtype=input_ids[0].dtype)
next_audio_tokens.append(next_a)
next_t = sample(logit_t, **kwargs).to(dtype=input_ids[0].dtype)
return next_audio_tokens, next_t
def load_audio(path):
audio = whisper.load_audio(path)
duration_ms = (len(audio) / 16000) * 1000
audio = whisper.pad_or_trim(audio)
mel = whisper.log_mel_spectrogram(audio)
return mel, int(duration_ms / 20) + 1
def generate_audio_data(snac_tokens, snacmodel, device=None):
audio = reconstruct_tensors(snac_tokens, device)
with torch.inference_mode():
audio_hat = snacmodel.decode(audio)
audio_data = audio_hat.cpu().numpy().astype(np.float64) * 32768.0
audio_data = audio_data.astype(np.int16)
audio_data = audio_data.tobytes()
return audio_data
@torch.inference_mode()
def run_AT_batch_stream(
audio_path,
stream_stride=4,
max_returned_tokens=2048,
temperature=0.9,
top_k=1,
top_p=1.0,
eos_id_a=_eoa,
eos_id_t=_eot,
):
assert os.path.exists(audio_path), f"audio file {audio_path} not found"
model.set_kv_cache(batch_size=2, device=device)
mel, leng = load_audio(audio_path)
audio_feature, input_ids = get_input_ids_whisper_ATBatch(mel, leng, whispermodel, device)
T = input_ids[0].size(1)
# device = input_ids[0].device
assert max_returned_tokens > T, f"max_returned_tokens {max_returned_tokens} should be greater than audio length {T}"
if model.max_seq_length < max_returned_tokens - 1:
raise NotImplementedError(
f"max_seq_length {model.max_seq_length} needs to be >= {max_returned_tokens - 1}"
)
input_pos = torch.tensor([T], device=device)
list_output = [[] for i in range(8)]
tokens_A, token_T = next_token_batch(
model,
audio_feature.to(torch.float32).to(model.device),
input_ids,
[T - 3, T - 3],
["A1T2", "A1T2"],
input_pos=torch.arange(0, T, device=device),
temperature=temperature,
top_k=top_k,
top_p=top_p,
)
for i in range(7):
list_output[i].append(tokens_A[i].tolist()[0])
list_output[7].append(token_T.tolist()[0])
model_input_ids = [[] for i in range(8)]
for i in range(7):
tokens_A[i] = tokens_A[i].clone() + padded_text_vocabsize + i * padded_audio_vocabsize
model_input_ids[i].append(tokens_A[i].clone().to(device).to(torch.int32))
model_input_ids[i].append(torch.tensor([layershift(4097, i)], device=device))
model_input_ids[i] = torch.stack(model_input_ids[i])
model_input_ids[-1].append(token_T.clone().to(torch.int32))
model_input_ids[-1].append(token_T.clone().to(torch.int32))
model_input_ids[-1] = torch.stack(model_input_ids[-1])
text_end = False
index = 1
nums_generate = stream_stride
begin_generate = False
current_index = 0
total_num = 0
for _ in tqdm(range(2, max_returned_tokens - T + 1)):
tokens_A, token_T = next_token_batch(
model,
None,
model_input_ids,
None,
None,
input_pos=input_pos,
temperature=temperature,
top_k=top_k,
top_p=top_p,
)
if text_end:
token_T = torch.tensor([_pad_t], device=device)
if tokens_A[-1] == eos_id_a:
break
if token_T == eos_id_t:
text_end = True
for i in range(7):
list_output[i].append(tokens_A[i].tolist()[0])
list_output[7].append(token_T.tolist()[0])
model_input_ids = [[] for i in range(8)]
for i in range(7):
tokens_A[i] = tokens_A[i].clone() +padded_text_vocabsize + i * padded_audio_vocabsize
model_input_ids[i].append(tokens_A[i].clone().to(device).to(torch.int32))
model_input_ids[i].append(
torch.tensor([layershift(4097, i)], device=device)
)
model_input_ids[i] = torch.stack(model_input_ids[i])
model_input_ids[-1].append(token_T.clone().to(torch.int32))
model_input_ids[-1].append(token_T.clone().to(torch.int32))
model_input_ids[-1] = torch.stack(model_input_ids[-1])
if index == 7:
begin_generate = True
if begin_generate and streaming_output:
current_index += 1
if current_index == nums_generate:
current_index = 0
snac = get_snac(list_output, index, nums_generate)
audio_stream = generate_audio_data(snac, snacmodel, device)
yield audio_stream
input_pos = input_pos.add_(1)
index += 1
total_num += 1
text = text_tokenizer.decode(torch.tensor(list_output[-1]))
print(f"text output: {text}")
model.clear_kv_cache()
if not streaming_output:
snac = get_snac(list_output, 7, total_num-7)
audio_stream = generate_audio_data(snac, snacmodel, device)
return audio_stream
# return list_output
# for chunk in run_AT_batch_stream('./data/samples/output1.wav'):
# audio_data = np.frombuffer(chunk, dtype=np.int16)
@spaces.GPU
def process_audio(audio):
filepath = audio
print(f"filepath: {filepath}")
if filepath is None:
return OUT_RATE, np.zeros((100, OUT_CHANNELS), dtype=np.int16)
if not streaming_output:
chunk = run_AT_batch_stream(filepath)
audio_data = np.frombuffer(chunk, dtype=np.int16)
audio_data = audio_data.reshape(-1, OUT_CHANNELS)
return OUT_RATE, audio_data.astype(np.int16)
cnt = 0
tik = time.time()
for chunk in run_AT_batch_stream(filepath):
# Convert chunk to numpy array
if cnt == 0:
print(f"first chunk time cost: {time.time() - tik:.3f}")
cnt += 1
audio_data = np.frombuffer(chunk, dtype=np.int16)
audio_data = audio_data.reshape(-1, OUT_CHANNELS)
if streaming_output:
yield OUT_RATE, audio_data.astype(np.int16)
else:
return OUT_RATE, audio_data.astype(np.int16)
# # Create the Gradio interface
# with gr.Blocks() as demo:
# # Input component: allows users to record or upload audio
# audio_input = gr.Audio(type="filepath", label="Record or Upload Audio")
# # Output component: audio output that will automatically play
# audio_output = gr.Audio(label="Processed Audio", streaming=streaming_output, autoplay=True)
# # Button to trigger processing after recording/uploading
# submit_btn = gr.Button("Submit")
# # Functionality: When the button is clicked, process the audio and output it
# submit_btn.click(fn=process_audio, inputs=audio_input, outputs=audio_output)
if __name__ == '__main__':
demo = gr.Interface(
process_audio,
inputs=gr.Audio(type="filepath", label="Microphone"),
outputs=[gr.Audio(label="Response", streaming=streaming_output, autoplay=True)],
title="Chat Mini-Omni Demo",
live=True,
)
demo.queue()
demo.launch()