rag-bench-evaluation / scripts /evaluate_factual_robustness.py
gourisankar85's picture
Upload 5 files
85624c2 verified
import json
import tqdm
import logging
from scripts.get_prediction_file import get_prediction_file
from scripts.groq_client import GroqClient
from scripts.helper import adaptive_delay, ensure_directory_exists, load_used_data, update_config
from scripts.prompt import get_factual_prompt
def evaluate_factual_robustness(config):
"""Evaluates negative rejection for a given model under multiple correct_rate/noise_rate conditions."""
model_name = config['model_name']
if model_name in config['models']:
model = GroqClient(plm=model_name)
else:
logging.warning(f"Skipping unknown model: {model_name}")
return
# Define the conditions to test
conditions = [
{"correct_rate": 1.0, "noise_rate": 0.2, "label": "factual_only"}, # factual documents with some noisy documents
{"correct_rate": 0.0, "noise_rate": 0.4, "label": "counterfactual"} # Counterfactual + noise
]
base_path = "results/Counterfactual Robustness"
result_file = f"{base_path}/scores_{config['output_file_extension']}.json"
final_scores = {"conditions": []}
def process_query(model, data, used_data, output_file):
"""Processes a single query, generates evaluation, and writes the result."""
if data['id'] in used_data and data['query'] == used_data[data['id']]['query'] and data['ans'] == used_data[data['id']]['ans']:
output_file.write(json.dumps(used_data[data['id']], ensure_ascii=False) + '\n')
return used_data[data['id']]
try:
instruction = get_factual_prompt(data['query'], data['prediction'])
#eval_model = GroqClient(plm='llama3-70b-8192')
for attempt in range(1, 4):
evaluation = model.generate(instruction)
if evaluation:
break
adaptive_delay(attempt)
data['evaluation'] = evaluation
logging.info(f"Model Response for Factual robustness: {evaluation}")
output_file.write(json.dumps(data, ensure_ascii=False) + '\n')
return data
except Exception as e:
print(f"Error processing query: {e}")
return None
def calculate_scores(results, condition):
"""Calculates and returns rejection rates and other metrics."""
rejecttt = 0
tt = 0
correct_tt = 0
for i in results:
if "has identified" in i['evaluation'] or "Yes" in i['evaluation']:
rejecttt += 1
if 0 not in i['label'] and 1 in i['label']:
correct_tt += 1
if 0 not in i['label'] and 1 in i['label']:
tt += 1
scores = {
'reject_rate': rejecttt / len(results) if len(results) > 0 else 0, #Error Detection Rate (ED)
'all_rate': tt / len(results) if len(results) > 0 else 0,
'correct_rate': correct_tt / rejecttt if rejecttt > 0 else 0, #Error Correction Rate (CR)
'tt': tt,
'rejecttt': rejecttt,
'correct_tt': correct_tt,
'nums': len(results),
'noise_rate': condition['noise_rate'],
'condition_label': condition['label']
}
return scores
for condition in conditions:
logging.info(f"\nEvaluating condition: {condition['label']} (correct_rate={condition['correct_rate']}, noise_rate={condition['noise_rate']})")
# Update config with current condition's noise_rate
config['noise_rate'] = condition['noise_rate']
#config['passage_num'] = 10
update_config(config)
# File paths with condition-specific suffixes
pred_file = get_prediction_file(config, condition['correct_rate'])
output_file = f"{base_path}/output_{config['output_file_extension']}.json"
ensure_directory_exists(output_file)
logging.info(f"Factual pred file for {condition['label']}: {pred_file}")
# Load or recalculate data
used_data = []
results = []
if config['UsePreCalculatedValue']:
logging.info(f"Trying to use pre-calculated values for {condition['label']}")
used_data = load_used_data(output_file)
else:
logging.info(f"Recalculating the metrics for {condition['label']}...")
with open(output_file, 'w', encoding='utf-8') as f_out, open(pred_file, 'r', encoding='utf-8') as f_eval:
for line in tqdm.tqdm(f_eval):
data = json.loads(line)
processed_data = process_query(model, data, used_data, f_out)
if processed_data:
results.append(processed_data)
# Compute and save scores
scores = calculate_scores(results, condition)
final_scores["conditions"].append(scores)
logging.info(f"Counterfactual Robustness Score for {condition['label']}: {scores}")
with open(result_file, 'w', encoding='utf-8') as f_result:
json.dump(final_scores, f_result, ensure_ascii=False, indent=4)