|
import logging
|
|
import os
|
|
from typing import List, Dict, Any, Tuple
|
|
from langchain_groq import ChatGroq
|
|
from langchain.chains import RetrievalQA
|
|
from langchain_core.documents import Document
|
|
from langchain_core.retrievers import BaseRetriever
|
|
from langchain.chains.summarize import load_summarize_chain
|
|
from langchain.prompts import PromptTemplate
|
|
|
|
class LLMManager:
|
|
DEFAULT_MODEL = "gemma2-9b-it"
|
|
|
|
def __init__(self):
|
|
self.generation_llm = None
|
|
logging.info("LLMManager initialized")
|
|
|
|
|
|
try:
|
|
self.initialize_generation_llm(self.DEFAULT_MODEL)
|
|
logging.info(f"Initialized default LLM model: {self.DEFAULT_MODEL}")
|
|
except ValueError as e:
|
|
logging.error(f"Failed to initialize default LLM model: {str(e)}")
|
|
|
|
def initialize_generation_llm(self, model_name: str) -> None:
|
|
"""
|
|
Initialize the generation LLM using the Groq API.
|
|
|
|
Args:
|
|
model_name (str): The name of the model to use for generation.
|
|
|
|
Raises:
|
|
ValueError: If GROQ_API_KEY is not set.
|
|
"""
|
|
api_key = os.getenv("GROQ_API_KEY")
|
|
if not api_key:
|
|
raise ValueError("GROQ_API_KEY is not set. Please add it in your environment variables.")
|
|
|
|
os.environ["GROQ_API_KEY"] = api_key
|
|
self.generation_llm = ChatGroq(model=model_name, temperature=0.7)
|
|
self.generation_llm.name = model_name
|
|
logging.info(f"Generation LLM {model_name} initialized")
|
|
|
|
def reinitialize_llm(self, model_name: str) -> str:
|
|
"""
|
|
Reinitialize the LLM with a new model name.
|
|
|
|
Args:
|
|
model_name (str): The name of the new model to initialize.
|
|
|
|
Returns:
|
|
str: Status message indicating success or failure.
|
|
"""
|
|
try:
|
|
self.initialize_generation_llm(model_name)
|
|
return f"LLM model changed to {model_name}"
|
|
except ValueError as e:
|
|
logging.error(f"Failed to reinitialize LLM with model {model_name}: {str(e)}")
|
|
return f"Error: Failed to change LLM model: {str(e)}"
|
|
|
|
def generate_response(self, question: str, relevant_docs: List[Dict[str, Any]]) -> Tuple[str, List[Document]]:
|
|
"""
|
|
Generate a response using the generation LLM based on the question and relevant documents.
|
|
|
|
Args:
|
|
question (str): The user's query.
|
|
relevant_docs (List[Dict[str, Any]]): List of relevant document chunks with text, metadata, and scores.
|
|
|
|
Returns:
|
|
Tuple[str, List[Document]]: The LLM's response and the source documents used.
|
|
|
|
Raises:
|
|
ValueError: If the generation LLM is not initialized.
|
|
Exception: If there's an error during the QA chain invocation.
|
|
"""
|
|
if not self.generation_llm:
|
|
raise ValueError("Generation LLM is not initialized. Call initialize_generation_llm first.")
|
|
|
|
|
|
documents = [
|
|
Document(page_content=doc['text'], metadata=doc['metadata'])
|
|
for doc in relevant_docs
|
|
]
|
|
|
|
|
|
class SimpleRetriever(BaseRetriever):
|
|
def __init__(self, docs: List[Document], **kwargs):
|
|
super().__init__(**kwargs)
|
|
self._docs = docs
|
|
logging.debug(f"SimpleRetriever initialized with {len(docs)} documents")
|
|
|
|
def _get_relevant_documents(self, query: str) -> List[Document]:
|
|
logging.debug(f"SimpleRetriever._get_relevant_documents called with query: {query}")
|
|
return self._docs
|
|
|
|
async def _aget_relevant_documents(self, query: str) -> List[Document]:
|
|
logging.debug(f"SimpleRetriever._aget_relevant_documents called with query: {query}")
|
|
return self._docs
|
|
|
|
|
|
retriever = SimpleRetriever(docs=documents)
|
|
|
|
|
|
qa_chain = RetrievalQA.from_chain_type(
|
|
llm=self.generation_llm,
|
|
retriever=retriever,
|
|
return_source_documents=True
|
|
)
|
|
|
|
try:
|
|
result = qa_chain.invoke({"query": question})
|
|
response = result['result']
|
|
source_docs = result['source_documents']
|
|
|
|
return response, source_docs
|
|
except Exception as e:
|
|
logging.error(f"Error during QA chain invocation: {str(e)}")
|
|
raise e
|
|
|
|
def generate_summary_v0(self, chunks: any):
|
|
logging.info("Generating summary ...")
|
|
|
|
|
|
limited_chunks = chunks[:30]
|
|
|
|
|
|
full_text = "\n".join(chunk['text'] for chunk in limited_chunks)
|
|
text_length = len(full_text)
|
|
logging.info(f"Total text length (characters): {text_length}")
|
|
|
|
|
|
|
|
MAX_CHAR_LIMIT = 3200
|
|
if text_length > MAX_CHAR_LIMIT:
|
|
logging.warning(f"Input text too long ({text_length} chars), truncating to {MAX_CHAR_LIMIT} chars.")
|
|
full_text = full_text[:MAX_CHAR_LIMIT]
|
|
|
|
|
|
custom_prompt_template = """
|
|
You are an expert summarizer. Summarize the following text into a concise summary using bullet points.
|
|
Ensure that the final summary is no longer than 20-30 bullet points and fits within 15-20 lines.
|
|
Focus only on the most critical points.
|
|
|
|
Text to summarize:
|
|
{text}
|
|
|
|
Summary:
|
|
"""
|
|
prompt = PromptTemplate(input_variables=["text"], template=custom_prompt_template)
|
|
|
|
|
|
chain = load_summarize_chain(self.generation_llm, chain_type="stuff", prompt=prompt)
|
|
|
|
|
|
docs = [Document(page_content=full_text)]
|
|
|
|
|
|
summary = chain.invoke(docs)
|
|
return summary['output_text']
|
|
|
|
def generate_questions(self, chunks: any):
|
|
logging.info("Generating sample questions ...")
|
|
|
|
|
|
limited_chunks = chunks[:30]
|
|
|
|
|
|
full_text = "\n".join(chunk['text'] for chunk in limited_chunks)
|
|
text_length = len(full_text)
|
|
logging.info(f"Total text length for questions: {text_length}")
|
|
|
|
MAX_CHAR_LIMIT = 3200
|
|
if text_length > MAX_CHAR_LIMIT:
|
|
logging.warning(f"Input text too long ({text_length} chars), truncating to {MAX_CHAR_LIMIT} chars.")
|
|
full_text = full_text[:MAX_CHAR_LIMIT]
|
|
|
|
|
|
question_prompt_template = """
|
|
You are an AI expert at creating questions from documents.
|
|
|
|
Based on the text below, generate not less than 20 insightful and highly relevant sample questions that a user might ask to better understand the content.
|
|
|
|
**Instructions:**
|
|
- Questions must be specific to the document's content and context.
|
|
- Avoid generic questions like 'What is this document about?'
|
|
- Do not include numbers, prefixes (e.g., '1.', '2.'), or explanations (e.g., '(Clarifies...)').
|
|
- Each question should be a single, clear sentence ending with a question mark.
|
|
- Focus on key concepts, processes, components, or use cases mentioned in the text.
|
|
|
|
Text:
|
|
{text}
|
|
|
|
Output format:
|
|
What is the purpose of the Communication Server in Collateral Management?
|
|
How does the system handle data encryption for secure communication?
|
|
...
|
|
"""
|
|
prompt = PromptTemplate(input_variables=["text"], template=question_prompt_template)
|
|
|
|
chain = load_summarize_chain(self.generation_llm, chain_type="stuff", prompt=prompt)
|
|
docs = [Document(page_content=full_text)]
|
|
|
|
try:
|
|
result = chain.invoke(docs)
|
|
question_output = result.get("output_text", "").strip()
|
|
|
|
|
|
questions = []
|
|
for line in question_output.split("\n"):
|
|
|
|
cleaned_line = line.strip().strip("-*1234567890. ").rstrip(".")
|
|
|
|
cleaned_line = cleaned_line.split("(")[0].strip()
|
|
|
|
if cleaned_line and cleaned_line.endswith("?"):
|
|
questions.append(cleaned_line)
|
|
|
|
|
|
questions = questions[:10]
|
|
logging.info(f"Generated questions: {questions}")
|
|
return questions
|
|
except Exception as e:
|
|
logging.error(f"Error generating questions: {e}")
|
|
return []
|
|
|
|
def generate_summary(self, chunks: Any, toc_text: Any, summary_type: str = "medium") -> str:
|
|
"""
|
|
Generate a summary of the document using LangChain's summarization chains.
|
|
|
|
Args:
|
|
vector_store_manager: Instance of VectorStoreManager with a FAISS vector store.
|
|
summary_type (str): Type of summary ("small", "medium", "detailed").
|
|
k (int): Number of chunks to retrieve from the vector store.
|
|
include_toc (bool): Whether to include the table of contents (if available).
|
|
|
|
Returns:
|
|
str: Generated summary.
|
|
|
|
Raises:
|
|
ValueError: If summary_type is invalid or vector store is not initialized.
|
|
"""
|
|
|
|
|
|
if summary_type == "small":
|
|
k = min(k, 3)
|
|
chain_type = "stuff"
|
|
word_count = "50-100"
|
|
elif summary_type == "medium":
|
|
k = min(k, 10)
|
|
chain_type = "map_reduce"
|
|
word_count = "200-400"
|
|
else:
|
|
k = min(k, 20)
|
|
chain_type = "map_reduce"
|
|
word_count = "500-1000"
|
|
|
|
|
|
if chain_type == "stuff":
|
|
prompt = PromptTemplate(
|
|
input_variables=["text"],
|
|
template=(
|
|
"Generate a {summary_type} summary ({word_count} words) of the following document excerpts. "
|
|
"Focus on key points and ensure clarity. Stick strictly to the provided text:\n\n"
|
|
"{toc_prompt}{text}"
|
|
).format(
|
|
summary_type=summary_type,
|
|
word_count=word_count,
|
|
toc_prompt="Table of Contents:\n{toc_text}\n\n" if toc_text else ""
|
|
)
|
|
)
|
|
chain = load_summarize_chain(
|
|
llm=self.generation_llm,
|
|
chain_type="stuff",
|
|
prompt=prompt
|
|
)
|
|
else:
|
|
map_prompt = PromptTemplate(
|
|
input_variables=["text"],
|
|
template=(
|
|
"Summarize the following document excerpt in 1-2 sentences, focusing on key points. "
|
|
"Consider the document's structure from this table of contents:\n\n"
|
|
"Table of Contents:\n{toc_text}\n\nExcerpt:\n{text}"
|
|
).format(toc_text=toc_text if toc_text else "Not provided")
|
|
)
|
|
combine_prompt = PromptTemplate(
|
|
input_variables=["text"],
|
|
template=(
|
|
"Combine the following summaries into a cohesive {summary_type} summary "
|
|
"({word_count} words) of the document. Ensure clarity, avoid redundancy, and "
|
|
"organize by key themes or sections if applicable:\n\n{text}"
|
|
).format(summary_type=summary_type, word_count=word_count)
|
|
)
|
|
chain = load_summarize_chain(
|
|
llm=self.generation_llm,
|
|
chain_type="map_reduce",
|
|
map_prompt=map_prompt,
|
|
combine_prompt=combine_prompt,
|
|
return_intermediate_steps=False
|
|
)
|
|
|
|
|
|
try:
|
|
logging.info(f"Generating {summary_type} summary with {len(chunks)} chunks")
|
|
summary = chain.run(chunks)
|
|
logging.info(f"{summary_type.capitalize()} summary generated successfully")
|
|
return summary
|
|
except Exception as e:
|
|
logging.error(f"Error generating summary: {str(e)}")
|
|
return f"Error generating summary: {str(e)}" |