Spaces:
Sleeping
Sleeping
| import logging | |
| import os | |
| from typing import List, Dict, Any, Tuple | |
| from langchain_groq import ChatGroq | |
| from langchain.chains import RetrievalQA | |
| from langchain_core.documents import Document | |
| from langchain_core.retrievers import BaseRetriever | |
| from langchain.chains.summarize import load_summarize_chain | |
| from langchain.prompts import PromptTemplate | |
| class LLMManager: | |
| DEFAULT_MODEL = "gemma2-9b-it" # Set the default model name | |
| def __init__(self): | |
| self.generation_llm = None | |
| logging.info("LLMManager initialized") | |
| # Initialize the default model during construction | |
| try: | |
| self.initialize_generation_llm(self.DEFAULT_MODEL) | |
| logging.info(f"Initialized default LLM model: {self.DEFAULT_MODEL}") | |
| except ValueError as e: | |
| logging.error(f"Failed to initialize default LLM model: {str(e)}") | |
| def initialize_generation_llm(self, model_name: str) -> None: | |
| """ | |
| Initialize the generation LLM using the Groq API. | |
| Args: | |
| model_name (str): The name of the model to use for generation. | |
| Raises: | |
| ValueError: If GROQ_API_KEY is not set. | |
| """ | |
| api_key = os.getenv("GROQ_API_KEY") | |
| if not api_key: | |
| raise ValueError("GROQ_API_KEY is not set. Please add it in your environment variables.") | |
| os.environ["GROQ_API_KEY"] = api_key | |
| self.generation_llm = ChatGroq(model=model_name, temperature=0.7) | |
| self.generation_llm.name = model_name | |
| logging.info(f"Generation LLM {model_name} initialized") | |
| def reinitialize_llm(self, model_name: str) -> str: | |
| """ | |
| Reinitialize the LLM with a new model name. | |
| Args: | |
| model_name (str): The name of the new model to initialize. | |
| Returns: | |
| str: Status message indicating success or failure. | |
| """ | |
| try: | |
| self.initialize_generation_llm(model_name) | |
| return f"LLM model changed to {model_name}" | |
| except ValueError as e: | |
| logging.error(f"Failed to reinitialize LLM with model {model_name}: {str(e)}") | |
| return f"Error: Failed to change LLM model: {str(e)}" | |
| def generate_response(self, question: str, relevant_docs: List[Dict[str, Any]]) -> Tuple[str, List[Document]]: | |
| """ | |
| Generate a response using the generation LLM based on the question and relevant documents. | |
| Args: | |
| question (str): The user's query. | |
| relevant_docs (List[Dict[str, Any]]): List of relevant document chunks with text, metadata, and scores. | |
| Returns: | |
| Tuple[str, List[Document]]: The LLM's response and the source documents used. | |
| Raises: | |
| ValueError: If the generation LLM is not initialized. | |
| Exception: If there's an error during the QA chain invocation. | |
| """ | |
| if not self.generation_llm: | |
| raise ValueError("Generation LLM is not initialized. Call initialize_generation_llm first.") | |
| # Convert the relevant documents into LangChain Document objects | |
| documents = [ | |
| Document(page_content=doc['text'], metadata=doc['metadata']) | |
| for doc in relevant_docs | |
| ] | |
| # Create a proper retriever by subclassing BaseRetriever | |
| class SimpleRetriever(BaseRetriever): | |
| def __init__(self, docs: List[Document], **kwargs): | |
| super().__init__(**kwargs) # Pass kwargs to BaseRetriever | |
| self._docs = docs # Use a private attribute to store docs | |
| logging.debug(f"SimpleRetriever initialized with {len(docs)} documents") | |
| def _get_relevant_documents(self, query: str) -> List[Document]: | |
| logging.debug(f"SimpleRetriever._get_relevant_documents called with query: {query}") | |
| return self._docs | |
| async def _aget_relevant_documents(self, query: str) -> List[Document]: | |
| logging.debug(f"SimpleRetriever._aget_relevant_documents called with query: {query}") | |
| return self._docs | |
| # Instantiate the retriever | |
| retriever = SimpleRetriever(docs=documents) | |
| # Create a retrieval-based question-answering chain | |
| qa_chain = RetrievalQA.from_chain_type( | |
| llm=self.generation_llm, | |
| retriever=retriever, | |
| return_source_documents=True | |
| ) | |
| try: | |
| result = qa_chain.invoke({"query": question}) | |
| response = result['result'] | |
| source_docs = result['source_documents'] | |
| #logging.info(f"Generated response for question: {question} : {response}") | |
| return response, source_docs | |
| except Exception as e: | |
| logging.error(f"Error during QA chain invocation: {str(e)}") | |
| raise e | |
| def generate_summary_v0(self, chunks: any): | |
| logging.info("Generating summary ...") | |
| # Limit the number of chunks (for example, top 30 chunks) | |
| limited_chunks = chunks[:30] | |
| # Combine text from the selected chunks | |
| full_text = "\n".join(chunk['text'] for chunk in limited_chunks) | |
| text_length = len(full_text) | |
| logging.info(f"Total text length (characters): {text_length}") | |
| # Define a maximum character limit to fit in a 1024-token context. | |
| # For many models, roughly 3200 characters is a safe limit. | |
| MAX_CHAR_LIMIT = 3200 | |
| if text_length > MAX_CHAR_LIMIT: | |
| logging.warning(f"Input text too long ({text_length} chars), truncating to {MAX_CHAR_LIMIT} chars.") | |
| full_text = full_text[:MAX_CHAR_LIMIT] | |
| # Define a custom prompt to instruct concise summarization in bullet points. | |
| custom_prompt_template = """ | |
| You are an expert summarizer. Summarize the following text into a concise summary using bullet points. | |
| Ensure that the final summary is no longer than 20-30 bullet points and fits within 15-20 lines. | |
| Focus only on the most critical points. | |
| Text to summarize: | |
| {text} | |
| Summary: | |
| """ | |
| prompt = PromptTemplate(input_variables=["text"], template=custom_prompt_template) | |
| # Use the 'stuff' chain type to send a single LLM request with our custom prompt. | |
| chain = load_summarize_chain(self.generation_llm, chain_type="stuff", prompt=prompt) | |
| # Wrap the full text in a single Document object (chain expects a list of Documents) | |
| docs = [Document(page_content=full_text)] | |
| # Generate the summary | |
| summary = chain.invoke(docs) | |
| return summary['output_text'] | |
| def generate_questions(self, chunks: any): | |
| logging.info("Generating sample questions ...") | |
| # Use the top 30 chunks or fewer | |
| limited_chunks = chunks[:30] | |
| # Combine text from chunks | |
| full_text = "\n".join(chunk['text'] for chunk in limited_chunks) | |
| text_length = len(full_text) | |
| logging.info(f"Total text length for questions: {text_length}") | |
| MAX_CHAR_LIMIT = 3200 | |
| if text_length > MAX_CHAR_LIMIT: | |
| logging.warning(f"Input text too long ({text_length} chars), truncating to {MAX_CHAR_LIMIT} chars.") | |
| full_text = full_text[:MAX_CHAR_LIMIT] | |
| # Prompt template for generating questions | |
| question_prompt_template = """ | |
| You are an AI expert at creating questions from documents. | |
| Based on the text below, generate not less than 20 insightful and highly relevant sample questions that a user might ask to better understand the content. | |
| **Instructions:** | |
| - Questions must be specific to the document's content and context. | |
| - Avoid generic questions like 'What is this document about?' | |
| - Do not include numbers, prefixes (e.g., '1.', '2.'), or explanations (e.g., '(Clarifies...)'). | |
| - Each question should be a single, clear sentence ending with a question mark. | |
| - Focus on key concepts, processes, components, or use cases mentioned in the text. | |
| Text: | |
| {text} | |
| Output format: | |
| What is the purpose of the Communication Server in Collateral Management? | |
| How does the system handle data encryption for secure communication? | |
| ... | |
| """ | |
| prompt = PromptTemplate(input_variables=["text"], template=question_prompt_template) | |
| chain = load_summarize_chain(self.generation_llm, chain_type="stuff", prompt=prompt) | |
| docs = [Document(page_content=full_text)] | |
| try: | |
| result = chain.invoke(docs) | |
| question_output = result.get("output_text", "").strip() | |
| # Clean and parse the output into a list of questions | |
| questions = [] | |
| for line in question_output.split("\n"): | |
| # Remove any leading/trailing whitespace, numbers, or bullet points | |
| cleaned_line = line.strip().strip("-*1234567890. ").rstrip(".") | |
| # Remove any explanation in parentheses | |
| cleaned_line = cleaned_line.split("(")[0].strip() | |
| # Ensure the line is a valid question (ends with '?' and is not empty) | |
| if cleaned_line and cleaned_line.endswith("?"): | |
| questions.append(cleaned_line) | |
| # Limit to 10 questions | |
| questions = questions[:10] | |
| logging.info(f"Generated questions: {questions}") | |
| return questions | |
| except Exception as e: | |
| logging.error(f"Error generating questions: {e}") | |
| return [] | |
| def generate_summary(self, chunks: Any, toc_text: Any, summary_type: str = "medium") -> str: | |
| """ | |
| Generate a summary of the document using LangChain's summarization chains. | |
| Args: | |
| vector_store_manager: Instance of VectorStoreManager with a FAISS vector store. | |
| summary_type (str): Type of summary ("small", "medium", "detailed"). | |
| k (int): Number of chunks to retrieve from the vector store. | |
| include_toc (bool): Whether to include the table of contents (if available). | |
| Returns: | |
| str: Generated summary. | |
| Raises: | |
| ValueError: If summary_type is invalid or vector store is not initialized. | |
| """ | |
| # Define chunk retrieval parameters based on summary type | |
| if summary_type == "small": | |
| k = min(k, 3) # Fewer chunks for small summary | |
| chain_type = "stuff" # Use stuff for small summaries | |
| word_count = "50-100" | |
| elif summary_type == "medium": | |
| k = min(k, 10) | |
| chain_type = "map_reduce" # Use map-reduce for medium summaries | |
| word_count = "200-400" | |
| else: # detailed | |
| k = min(k, 20) | |
| chain_type = "map_reduce" # Use map-reduce for detailed summaries | |
| word_count = "500-1000" | |
| # Define prompts | |
| if chain_type == "stuff": | |
| prompt = PromptTemplate( | |
| input_variables=["text"], | |
| template=( | |
| "Generate a {summary_type} summary ({word_count} words) of the following document excerpts. " | |
| "Focus on key points and ensure clarity. Stick strictly to the provided text:\n\n" | |
| "{toc_prompt}{text}" | |
| ).format( | |
| summary_type=summary_type, | |
| word_count=word_count, | |
| toc_prompt="Table of Contents:\n{toc_text}\n\n" if toc_text else "" | |
| ) | |
| ) | |
| chain = load_summarize_chain( | |
| llm=self.generation_llm, | |
| chain_type="stuff", | |
| prompt=prompt | |
| ) | |
| else: # map_reduce | |
| map_prompt = PromptTemplate( | |
| input_variables=["text"], | |
| template=( | |
| "Summarize the following document excerpt in 1-2 sentences, focusing on key points. " | |
| "Consider the document's structure from this table of contents:\n\n" | |
| "Table of Contents:\n{toc_text}\n\nExcerpt:\n{text}" | |
| ).format(toc_text=toc_text if toc_text else "Not provided") | |
| ) | |
| combine_prompt = PromptTemplate( | |
| input_variables=["text"], | |
| template=( | |
| "Combine the following summaries into a cohesive {summary_type} summary " | |
| "({word_count} words) of the document. Ensure clarity, avoid redundancy, and " | |
| "organize by key themes or sections if applicable:\n\n{text}" | |
| ).format(summary_type=summary_type, word_count=word_count) | |
| ) | |
| chain = load_summarize_chain( | |
| llm=self.generation_llm, | |
| chain_type="map_reduce", | |
| map_prompt=map_prompt, | |
| combine_prompt=combine_prompt, | |
| return_intermediate_steps=False | |
| ) | |
| # Run the chain | |
| try: | |
| logging.info(f"Generating {summary_type} summary with {len(chunks)} chunks") | |
| summary = chain.run(chunks) | |
| logging.info(f"{summary_type.capitalize()} summary generated successfully") | |
| return summary | |
| except Exception as e: | |
| logging.error(f"Error generating summary: {str(e)}") | |
| return f"Error generating summary: {str(e)}" |