MQT-LLaVA / app.py
gordonhubackup's picture
init
8bce163
raw
history blame
7.27 kB
import argparse
import os
import random
import numpy as np
import torch
import torch.backends.cudnn as cudnn
import gradio as gr
import argparse
import torch
from llava.constants import (
IMAGE_TOKEN_INDEX,
DEFAULT_IMAGE_TOKEN,
DEFAULT_IM_START_TOKEN,
DEFAULT_IM_END_TOKEN,
IMAGE_PLACEHOLDER,
)
from llava.conversation import conv_templates, SeparatorStyle
from llava.model.builder import load_pretrained_model
from llava.utils import disable_torch_init
from llava.mm_utils import (
process_images,
tokenizer_image_token,
get_model_name_from_path,
)
from PIL import Image
import requests
from PIL import Image
from io import BytesIO
import re
from llava.chat import Chat, conv_llava_v1
# imports modules for registration
def parse_args():
parser = argparse.ArgumentParser(description="Demo")
parser.add_argument("--model-path", type=str, default="mqt_llava_weight")
parser.add_argument("--model-base", type=str, default=None)
# parser.add_argument("--image-file", type=str, required=True)
# parser.add_argument("--query", type=str, required=True)
parser.add_argument("--conv-mode", type=str, default='llava_v1')
parser.add_argument("--sep", type=str, default=",")
parser.add_argument("--temperature", type=float, default=0)
parser.add_argument("--top_p", type=float, default=None)
parser.add_argument("--num_beams", type=int, default=1)
parser.add_argument("--max_new_tokens", type=int, default=512)
parser.add_argument("--num-visual-tokens", type=int, default=256)
parser.add_argument("--gpu-id", type=int, default=0)
args = parser.parse_args()
return args
# ========================================
# Model Initialization
# ========================================
print('Initializing Chat')
args = parse_args()
if torch.cuda.is_available():
device='cuda:{}'.format(args.gpu_id)
else:
device=torch.device('cpu')
disable_torch_init()
model_name = get_model_name_from_path(args.model_path)
tokenizer, model, image_processor, context_len = load_pretrained_model(
args.model_path, args.model_base, model_name, device_map=device, device=device
)
# vis_processor_cfg = cfg.datasets_cfg.cc_sbu_align.vis_processor.train
# vis_processor = registry.get_processor_class(vis_processor_cfg.name).from_config(vis_processor_cfg)
chat = Chat(model, tokenizer, image_processor, args, device=device)
print('Initialization Finished')
# ========================================
# Gradio Setting
# ========================================
def gradio_reset(chat_state, img_list):
if chat_state is not None:
chat_state.messages = []
if img_list is not None:
img_list = []
return None, gr.update(value=None, interactive=True), gr.update(placeholder='Please upload your image first', interactive=False),gr.update(value="Upload & Start Chat", interactive=True), chat_state, img_list
def upload_img(gr_img, text_input, chat_state):
if gr_img is None:
return None, None, gr.update(interactive=True), chat_state, None
chat_state = conv_llava_v1.copy() #CONV_VISION.copy()
img_list = []
llm_message = chat.upload_img(gr_img, chat_state, img_list)
return gr.update(interactive=False), gr.update(interactive=True, placeholder='Type and press Enter'), gr.update(value="Start Chatting", interactive=False), chat_state, img_list
def gradio_ask(user_message, chatbot, chat_state):
if len(user_message) == 0:
return gr.update(interactive=True, placeholder='Input should not be empty!'), chatbot, chat_state
chat.ask(user_message, chat_state)
chatbot = chatbot + [[user_message, None]]
return '', chatbot, chat_state
def gradio_answer(chatbot, chat_state, img_list, num_beams, temperature, num_visual_tokens):
llm_message = chat.answer(conv=chat_state,
img_list=img_list,
num_beams=num_beams,
temperature=temperature,
num_visual_tokens=num_visual_tokens,
) #[0]
chatbot[-1][1] = llm_message[0]
return chatbot, chat_state, img_list
title = """<h1 align="center">Demo of MQT-LLaVA</h1>"""
description = """<h3>This is the demo of MQT-LLaVA. Upload your images and start chatting! <br> To use
example questions, click example image, hit upload & start chat, and press enter on your keyboard in the chatbox.
<br> Due to limited memory constraint, we only support single turn conversation. To ask multiple questions, hit Restart and upload your image! </h3>"""
article = """<p><a href='https://gordonhu608.github.io/mqt-llava/'><img src='https://img.shields.io/badge/Project-Page-Green'></a></p><p><a href='https://github.com/gordonhu608/MQT-LLaVA'><img src='https://img.shields.io/badge/Github-Code-blue'></a></p><p><a href='https://arxiv.org/abs/'><img src='https://img.shields.io/badge/Paper-ArXiv-red'></a></p>
"""
#TODO show examples below
with gr.Blocks() as demo:
gr.Markdown(title)
gr.Markdown(description)
gr.Markdown(article)
with gr.Row():
with gr.Column(scale=0.5):
image = gr.Image(type="pil")
upload_button = gr.Button(value="Upload & Start Chat", interactive=True, variant="primary")
clear = gr.Button("Restart 🔄")
num_visual_tokens = gr.Slider(
minimum=1,
maximum=256,
value=256,
step=1,
interactive=True,
label="Number of visual tokens",
)
temperature = gr.Slider(
minimum=0.1,
maximum=2.0,
value=1.0,
step=0.1,
interactive=True,
label="Temperature",
)
num_beams = gr.Slider(
minimum=1,
maximum=10,
value=5,
step=1,
interactive=True,
label="beam search numbers",
)
with gr.Column():
chat_state = gr.State()
img_list = gr.State()
chatbot = gr.Chatbot(label='MQT-LLaVA')
text_input = gr.Textbox(label='User', placeholder='Please upload your image first', interactive=False)
gr.Examples(examples=[
[f"images/extreme_ironing.jpg", "What is unusual about this image?"],
[f"images/waterview.jpg", "What are the things I should be cautious about when I visit here?"],
], inputs=[image, text_input])
upload_button.click(upload_img, [image, text_input, chat_state], [image, text_input, upload_button, chat_state, img_list])
text_input.submit(gradio_ask, [text_input, chatbot, chat_state], [text_input, chatbot, chat_state]).then(
gradio_answer, [chatbot, chat_state, img_list, num_beams, temperature, num_visual_tokens], [chatbot, chat_state, img_list]
)
clear.click(gradio_reset, [chat_state, img_list], [chatbot, image, text_input, upload_button, chat_state, img_list], queue=False)
demo.launch(enable_queue=True)