gordonchan's picture
Upload 41 files
ca56e6a verified
raw
history blame
5.47 kB
from fastapi import FastAPI
from fastapi.middleware.cors import CORSMiddleware
from loguru import logger
from api.config import SETTINGS
from api.utils.compat import model_dump
def create_app() -> FastAPI:
""" create fastapi app server """
app = FastAPI()
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
return app
def create_embedding_model():
""" get embedding model from sentence-transformers. """
if SETTINGS.tei_endpoint is not None:
from openai import AsyncOpenAI
client = AsyncOpenAI(base_url=SETTINGS.tei_endpoint, api_key="none")
else:
from sentence_transformers import SentenceTransformer
client = SentenceTransformer(SETTINGS.embedding_name, device=SETTINGS.embedding_device)
return client
def create_generate_model():
""" get generate model for chat or completion. """
from api.core.default import DefaultEngine
from api.adapter.model import load_model
if SETTINGS.patch_type == "attention":
from api.utils.patches import apply_attention_patch
apply_attention_patch(use_memory_efficient_attention=True)
if SETTINGS.patch_type == "ntk":
from api.utils.patches import apply_ntk_scaling_patch
apply_ntk_scaling_patch(SETTINGS.alpha)
include = {
"model_name", "quantize", "device", "device_map", "num_gpus", "pre_seq_len",
"load_in_8bit", "load_in_4bit", "using_ptuning_v2", "dtype", "resize_embeddings"
}
kwargs = model_dump(SETTINGS, include=include)
model, tokenizer = load_model(
model_name_or_path=SETTINGS.model_path,
adapter_model=SETTINGS.adapter_model_path,
**kwargs,
)
logger.info("Using default engine")
return DefaultEngine(
model,
tokenizer,
SETTINGS.device,
model_name=SETTINGS.model_name,
context_len=SETTINGS.context_length if SETTINGS.context_length > 0 else None,
prompt_name=SETTINGS.chat_template,
use_streamer_v2=SETTINGS.use_streamer_v2,
)
def create_vllm_engine():
""" get vllm generate engine for chat or completion. """
try:
from vllm.engine.arg_utils import AsyncEngineArgs
from vllm.engine.async_llm_engine import AsyncLLMEngine
from vllm.transformers_utils.tokenizer import get_tokenizer
from api.core.vllm_engine import VllmEngine
except ImportError:
return None
include = {
"tokenizer_mode", "trust_remote_code", "tensor_parallel_size",
"dtype", "gpu_memory_utilization", "max_num_seqs",
}
kwargs = model_dump(SETTINGS, include=include)
engine_args = AsyncEngineArgs(
model=SETTINGS.model_path,
max_num_batched_tokens=SETTINGS.max_num_batched_tokens if SETTINGS.max_num_batched_tokens > 0 else None,
max_model_len=SETTINGS.context_length if SETTINGS.context_length > 0 else None,
quantization=SETTINGS.quantization_method,
**kwargs,
)
engine = AsyncLLMEngine.from_engine_args(engine_args)
# A separate tokenizer to map token IDs to strings.
tokenizer = get_tokenizer(
engine_args.tokenizer,
tokenizer_mode=engine_args.tokenizer_mode,
trust_remote_code=True,
)
logger.info("Using vllm engine")
return VllmEngine(
engine,
tokenizer,
SETTINGS.model_name,
SETTINGS.chat_template,
SETTINGS.context_length,
)
def create_llama_cpp_engine():
""" get llama.cpp generate engine for chat or completion. """
try:
from llama_cpp import Llama
from api.core.llama_cpp_engine import LlamaCppEngine
except ImportError:
return None
include = {
"n_gpu_layers", "main_gpu", "tensor_split", "n_batch", "n_threads",
"n_threads_batch", "rope_scaling_type", "rope_freq_base", "rope_freq_scale"
}
kwargs = model_dump(SETTINGS, include=include)
engine = Llama(
model_path=SETTINGS.model_path,
n_ctx=SETTINGS.context_length if SETTINGS.context_length > 0 else 2048,
**kwargs,
)
logger.info("Using llama.cpp engine")
return LlamaCppEngine(engine, SETTINGS.model_name, SETTINGS.chat_template)
def create_tgi_engine():
""" get llama.cpp generate engine for chat or completion. """
try:
from text_generation import AsyncClient
from api.core.tgi import TGIEngine
except ImportError:
return None
client = AsyncClient(SETTINGS.tgi_endpoint)
logger.info("Using TGI engine")
return TGIEngine(client, SETTINGS.model_name, SETTINGS.chat_template)
# fastapi app
app = create_app()
# model for embedding
EMBEDDED_MODEL = create_embedding_model() if (SETTINGS.embedding_name and SETTINGS.activate_inference) else None
# model for transformers generate
if (not SETTINGS.only_embedding) and SETTINGS.activate_inference:
if SETTINGS.engine == "default":
GENERATE_ENGINE = create_generate_model()
elif SETTINGS.engine == "vllm":
GENERATE_ENGINE = create_vllm_engine()
elif SETTINGS.engine == "llama.cpp":
GENERATE_ENGINE = create_llama_cpp_engine()
elif SETTINGS.engine == "tgi":
GENERATE_ENGINE = create_tgi_engine()
else:
GENERATE_ENGINE = None
# model names for special processing
EXCLUDE_MODELS = ["baichuan-13b", "baichuan2-13b", "qwen", "chatglm3"]