iSeBetter / app.py
gopikrsmscs's picture
First model version
a61e8b3
raw
history blame
1.07 kB
import streamlit as st
import torch
from datasets import load_dataset
from sentence_transformers import SentenceTransformer, util
embedder = SentenceTransformer('all-mpnet-base-v2')
st.title("iSeBetter : Semantic Transformer")
st.header("Analyzing Patterns in Text")
text_input = st.text_area("Enter the issue details below:")
if st.button("Analyse the Issues"):
# Perform analysis (your existing code)
query_embedding = embedder.encode(text_input, convert_to_tensor=True)
corpus_embeddings = torch.load('saved_corpus.pt')
corpus_embeddings_name = torch.load('saved_corpus_list.txt')
cos_scores = util.cos_sim(query_embedding, corpus_embeddings)[0]
top_results = torch.topk(cos_scores, k=5)
# Results presentation
st.subheader("Top 5 Matched Results:")
result_table = "<table><tr><th>Matched Text</th><th>Score</th></tr>"
for score, idx in zip(top_results[0], top_results[1]):
st.markdown(f"- **{corpus_embeddings_name[idx]}** (Score: {score:.4f})")
st.progress(score.item())