Spaces:
Sleeping
Sleeping
import gradio as gr | |
from matplotlib import gridspec | |
import matplotlib.pyplot as plt | |
import numpy as np | |
from PIL import Image | |
import tensorflow as tf | |
from transformers import SegformerFeatureExtractor, TFSegformerForSemanticSegmentation | |
feature_extractor = SegformerFeatureExtractor.from_pretrained( | |
"prem-timsina/segformer-b0-finetuned-food", from_pt=True | |
) | |
model = TFSegformerForSemanticSegmentation.from_pretrained( | |
"prem-timsina/segformer-b0-finetuned-food", from_pt=True | |
) | |
def ade_palette(): | |
"""ADE20K palette that maps each class to RGB values.""" | |
return [ | |
[93, 93, 93], | |
[43, 240, 132], | |
[139, 136, 240], | |
[158, 83, 109], | |
[6, 76, 151], | |
[95, 170, 87], | |
[273, 236, 139], | |
[21, 155, 160], | |
[188, 220, 166], | |
[238, 96, 247], | |
[223, 180, 221], | |
[29, 97, 24], | |
[3, 233, 248], | |
[105, 118, 44], | |
[203, 237, 63], | |
[234, 100, 240], | |
[19, 179, 164], | |
[65, 22, 115], | |
[111, 128, 194], | |
[232, 41, 17], | |
[11, 250, 159], | |
[137, 163, 129], | |
[212, 223, 210], | |
[51, 37, 4], | |
[37, 63, 239], | |
[257, 180, 163], | |
[172, 53, 105], | |
[104, 150, 99], | |
[80, 157, 133], | |
[195, 104, 202], | |
[42, 187, 110], | |
[133, 225, 66], | |
[132, 99, 213], | |
[178, 248, 209], | |
[93, 147, 60], | |
[105, 109, 115], | |
[26, 65, 115], | |
[239, 52, 182], | |
[242, 19, 204], | |
[157, 101, 214], | |
[248, 85, 198], | |
[103, 198, 171], | |
[44, 129, 75], | |
[159, 32, 120], | |
[155, 77, 71], | |
[233, 231, 155], | |
[135, 196, 206], | |
[81, 53, 51], | |
[134, 221, 213], | |
[192, 27, 152], | |
[127, 127, 194], | |
[82, 161, 1], | |
[71, 80, 161], | |
[148, 9, 159], | |
[91, 110, 124], | |
[127, 157, 223], | |
[25, 210, 232], | |
[129, 0, 114], | |
[231, 187, 138], | |
[23, 17, 224], | |
[25, 255, 29], | |
[158, 19, 53], | |
[157, 190, 176], | |
[114, 140, 221], | |
[46, 104, 87], | |
[17, 114, 122], | |
[221, 12, 229], | |
[54, 20, 92], | |
[215, 191, 252], | |
[144, 127, 146], | |
[141, 116, 77], | |
[100, 89, 89], | |
[104, 115, 249], | |
[179, 212, 38], | |
[140, 248, 179], | |
[177, 230, 240], | |
[219, 98, 8], | |
[74, 219, 53], | |
[161, 28, 243], | |
[64, 57, 184], | |
[147, 193, 113], | |
[182, 15, 30], | |
[151, 204, 109], | |
[187, 76, 21], | |
[118, 163, 155], | |
[158, 30, 220], | |
[227, 170, 63], | |
[199, 186, 72], | |
[0, 241, 168], | |
[80, 150, 225], | |
[237, 250, 4], | |
[29, 210, 181], | |
[176, 120, 81], | |
[134, 47, 123], | |
[240, 141, 130], | |
[250, 41, 115], | |
[29, 88, 143], | |
[66, 151, 87], | |
[241, 231, 144], | |
[238, 107, 153], | |
[181, 96, 220], | |
[239, 122, 133], | |
[205, 120, 21], | |
[168, 12, 77], | |
] | |
labels_list = [] | |
with open(r'labels.txt', 'r') as fp: | |
for line in fp: | |
labels_list.append(line[:-1]) | |
colormap = np.asarray(ade_palette()) | |
def label_to_color_image(label): | |
if label.ndim != 2: | |
raise ValueError("Expect 2-D input label") | |
if np.max(label) >= len(colormap): | |
raise ValueError("label value too large.") | |
return colormap[label] | |
def draw_plot(pred_img, seg): | |
fig = plt.figure(figsize=(20, 15)) | |
grid_spec = gridspec.GridSpec(1, 2, width_ratios=[6, 1]) | |
plt.subplot(grid_spec[0]) | |
plt.imshow(pred_img) | |
plt.axis('off') | |
LABEL_NAMES = np.asarray(labels_list) | |
FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1) | |
FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP) | |
unique_labels = np.unique(seg.numpy().astype("uint8")) | |
ax = plt.subplot(grid_spec[1]) | |
plt.imshow(FULL_COLOR_MAP[unique_labels].astype(np.uint8), interpolation="nearest") | |
ax.yaxis.tick_right() | |
plt.yticks(range(len(unique_labels)), LABEL_NAMES[unique_labels]) | |
plt.xticks([], []) | |
ax.tick_params(width=0.0, labelsize=25) | |
return fig | |
def sepia(input_img): | |
input_img = Image.fromarray(input_img) | |
inputs = feature_extractor(images=input_img, return_tensors="tf") | |
outputs = model(**inputs) | |
logits = outputs.logits | |
logits = tf.transpose(logits, [0, 2, 3, 1]) | |
logits = tf.image.resize( | |
logits, input_img.size[::-1] | |
) # We reverse the shape of `image` because `image.size` returns width and height. | |
seg = tf.math.argmax(logits, axis=-1)[0] | |
color_seg = np.zeros( | |
(seg.shape[0], seg.shape[1], 3), dtype=np.uint8 | |
) # height, width, 3 | |
for label, color in enumerate(colormap): | |
color_seg[seg.numpy() == label, :] = color | |
# Show image + mask | |
pred_img = np.array(input_img) * 0.5 + color_seg * 0.5 | |
pred_img = pred_img.astype(np.uint8) | |
fig = draw_plot(pred_img, seg) | |
return fig | |
demo = gr.Interface(fn=sepia, | |
inputs=gr.Image(shape=(400, 600)), | |
outputs=['plot'], | |
examples=["food-1.jpg","food-2.jpg", "food-3.jpg", "food-4.jpg", "food-5.jpg", "food-6.jpg"], | |
allow_flagging='never') | |
demo.launch() | |