gokaygokay commited on
Commit
e4c639b
1 Parent(s): a7665b5

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +13 -16
app.py CHANGED
@@ -135,17 +135,14 @@ lazy_realesrgan_x2 = LazyRealESRGAN(device, scale=2)
135
  lazy_realesrgan_x4 = LazyRealESRGAN(device, scale=4)
136
 
137
  @timer_func
138
- def resize_and_upscale(input_image, scale_factor):
 
139
  input_image = input_image.convert("RGB")
140
  W, H = input_image.size
141
- target_size = int(min(H, W) * scale_factor)
142
- scale = 2 if target_size <= 2048 else 4
143
-
144
- k = float(target_size) / min(H, W)
145
  H = int(round(H * k / 64.0)) * 64
146
  W = int(round(W * k / 64.0)) * 64
147
  img = input_image.resize((W, H), resample=Image.LANCZOS)
148
-
149
  if scale == 2:
150
  img = lazy_realesrgan_x2.predict(img)
151
  else:
@@ -169,18 +166,18 @@ def create_hdr_effect(original_image, hdr):
169
  lazy_pipe = LazyLoadPipeline()
170
  lazy_pipe.load()
171
 
172
- def prepare_image(input_image, scale_factor, hdr):
173
- condition_image = resize_and_upscale(input_image, scale_factor)
174
  condition_image = create_hdr_effect(condition_image, hdr)
175
  return condition_image
176
 
177
  @spaces.GPU
178
  @timer_func
179
- def gradio_process_image(input_image, scale_factor, num_inference_steps, strength, hdr, guidance_scale):
180
  print("Starting image processing...")
181
  torch.cuda.empty_cache()
182
 
183
- condition_image = prepare_image(input_image, scale_factor, hdr)
184
 
185
  prompt = "masterpiece, best quality, highres"
186
  negative_prompt = "low quality, normal quality, ugly, blurry, blur, lowres, bad anatomy, bad hands, cropped, worst quality, verybadimagenegative_v1.3, JuggernautNegative-neg"
@@ -225,24 +222,24 @@ with gr.Blocks() as demo:
225
  with gr.Column():
226
  output_slider = ImageSlider(label="Before / After", type="numpy")
227
  with gr.Accordion("Advanced Options", open=False):
228
- scale_factor = gr.Slider(minimum=1, maximum=4, value=2, step=0.1, label="Upscale Factor")
229
  num_inference_steps = gr.Slider(minimum=1, maximum=50, value=20, step=1, label="Number of Inference Steps")
230
  strength = gr.Slider(minimum=0, maximum=1, value=0.4, step=0.01, label="Strength")
231
  hdr = gr.Slider(minimum=0, maximum=1, value=0, step=0.1, label="HDR Effect")
232
  guidance_scale = gr.Slider(minimum=0, maximum=20, value=3, step=0.5, label="Guidance Scale")
233
 
234
  run_button.click(fn=gradio_process_image,
235
- inputs=[input_image, scale_factor, num_inference_steps, strength, hdr, guidance_scale],
236
  outputs=output_slider)
237
 
238
  # Add examples with all required inputs
239
  gr.Examples(
240
  examples=[
241
- ["image1.jpg", 2, 20, 0.4, 0, 3],
242
- ["image2.png", 16, 20, 0.4, 0, 3],
243
- ["image3.png", 2, 20, 0.4, 0, 3],
244
  ],
245
- inputs=[input_image, scale_factor, num_inference_steps, strength, hdr, guidance_scale],
246
  outputs=output_slider,
247
  fn=gradio_process_image,
248
  cache_examples=True,
 
135
  lazy_realesrgan_x4 = LazyRealESRGAN(device, scale=4)
136
 
137
  @timer_func
138
+ def resize_and_upscale(input_image, resolution):
139
+ scale = 2 if resolution <= 2048 else 4
140
  input_image = input_image.convert("RGB")
141
  W, H = input_image.size
142
+ k = float(resolution) / min(H, W)
 
 
 
143
  H = int(round(H * k / 64.0)) * 64
144
  W = int(round(W * k / 64.0)) * 64
145
  img = input_image.resize((W, H), resample=Image.LANCZOS)
 
146
  if scale == 2:
147
  img = lazy_realesrgan_x2.predict(img)
148
  else:
 
166
  lazy_pipe = LazyLoadPipeline()
167
  lazy_pipe.load()
168
 
169
+ def prepare_image(input_image, resolution, hdr):
170
+ condition_image = resize_and_upscale(input_image, resolution)
171
  condition_image = create_hdr_effect(condition_image, hdr)
172
  return condition_image
173
 
174
  @spaces.GPU
175
  @timer_func
176
+ def gradio_process_image(input_image, resolution, num_inference_steps, strength, hdr, guidance_scale):
177
  print("Starting image processing...")
178
  torch.cuda.empty_cache()
179
 
180
+ condition_image = prepare_image(input_image, resolution, hdr)
181
 
182
  prompt = "masterpiece, best quality, highres"
183
  negative_prompt = "low quality, normal quality, ugly, blurry, blur, lowres, bad anatomy, bad hands, cropped, worst quality, verybadimagenegative_v1.3, JuggernautNegative-neg"
 
222
  with gr.Column():
223
  output_slider = ImageSlider(label="Before / After", type="numpy")
224
  with gr.Accordion("Advanced Options", open=False):
225
+ resolution = gr.Slider(minimum=256, maximum=2048, value=512, step=256, label="Resolution")
226
  num_inference_steps = gr.Slider(minimum=1, maximum=50, value=20, step=1, label="Number of Inference Steps")
227
  strength = gr.Slider(minimum=0, maximum=1, value=0.4, step=0.01, label="Strength")
228
  hdr = gr.Slider(minimum=0, maximum=1, value=0, step=0.1, label="HDR Effect")
229
  guidance_scale = gr.Slider(minimum=0, maximum=20, value=3, step=0.5, label="Guidance Scale")
230
 
231
  run_button.click(fn=gradio_process_image,
232
+ inputs=[input_image, resolution, num_inference_steps, strength, hdr, guidance_scale],
233
  outputs=output_slider)
234
 
235
  # Add examples with all required inputs
236
  gr.Examples(
237
  examples=[
238
+ ["image1.jpg", 512, 20, 0.4, 0, 3],
239
+ ["image2.png", 512, 20, 0.4, 0, 3],
240
+ ["image3.png", 512, 20, 0.4, 0, 3],
241
  ],
242
+ inputs=[input_image, resolution, num_inference_steps, strength, hdr, guidance_scale],
243
  outputs=output_slider,
244
  fn=gradio_process_image,
245
  cache_examples=True,