AuraSR-v2 / app.py
gokaygokay's picture
Update app.py
e771e55 verified
raw
history blame
2.1 kB
import gradio as gr
from gradio_imageslider import ImageSlider
from PIL import Image
import numpy as np
from aura_sr import AuraSR
import torch
import spaces
# Force CPU usage
torch.set_default_tensor_type(torch.FloatTensor)
# Override torch.load to always use CPU
original_load = torch.load
torch.load = lambda *args, **kwargs: original_load(*args, **kwargs, map_location=torch.device('cpu'))
# Initialize the AuraSR model
aura_sr = AuraSR.from_pretrained("fal-ai/AuraSR")
# Move the model to CUDA if available, otherwise keep it on CPU
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
aura_sr.to(device)
@spaces.GPU
def process_image(input_image):
if input_image is None:
return None
# Ensure input_image is a numpy array
input_array = np.array(input_image)
# Convert to PIL Image for resizing
pil_image = Image.fromarray(input_array)
# Resize the longest side to 256 while maintaining aspect ratio
width, height = pil_image.size
if width > height:
new_width = 256
new_height = int(height * (256 / width))
else:
new_height = 256
new_width = int(width * (256 / height))
resized_image = pil_image.resize((new_width, new_height), Image.LANCZOS)
# Convert back to numpy array
resized_array = np.array(resized_image)
# Upscale the image using AuraSR
with torch.no_grad():
upscaled_image = aura_sr.upscale_4x(resized_array)
# Convert result to numpy array if it's not already
result_array = np.array(upscaled_image)
return [input_array, result_array]
with gr.Blocks() as demo:
gr.Markdown("# Image Upscaler using AuraSR")
with gr.Row():
with gr.Column(scale=1):
input_image = gr.Image(label="Input Image", type="numpy")
process_btn = gr.Button("Upscale Image")
with gr.Column(scale=1):
output_slider = ImageSlider(label="Before / After", type="numpy")
process_btn.click(
fn=process_image,
inputs=[input_image],
outputs=output_slider
)
demo.launch(debug=True)