Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
from gradio_imageslider import ImageSlider | |
from PIL import Image | |
import numpy as np | |
from aura_sr import AuraSR | |
import torch | |
import spaces | |
# Initialize the AuraSR model | |
aura_sr = AuraSR.from_pretrained("fal-ai/AuraSR") | |
# Move the model to CUDA if available, otherwise keep it on CPU | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
aura_sr.to(device) | |
def process_image(input_image): | |
if input_image is None: | |
return None | |
# Ensure input_image is a numpy array | |
input_array = np.array(input_image) | |
# Convert to PIL Image for resizing | |
pil_image = Image.fromarray(input_array) | |
# Resize the longest side to 256 while maintaining aspect ratio | |
width, height = pil_image.size | |
if width > height: | |
new_width = 256 | |
new_height = int(height * (256 / width)) | |
else: | |
new_height = 256 | |
new_width = int(width * (256 / height)) | |
resized_image = pil_image.resize((new_width, new_height), Image.LANCZOS) | |
# Convert back to numpy array | |
resized_array = np.array(resized_image) | |
# Upscale the image using AuraSR | |
with torch.no_grad(): | |
upscaled_image = aura_sr.upscale_4x(resized_array) | |
# Convert result to numpy array if it's not already | |
result_array = np.array(upscaled_image) | |
return [input_array, result_array] | |
with gr.Blocks() as demo: | |
gr.Markdown("# Image Upscaler using AuraSR") | |
with gr.Row(): | |
with gr.Column(scale=1): | |
input_image = gr.Image(label="Input Image", type="numpy") | |
process_btn = gr.Button("Upscale Image") | |
with gr.Column(scale=1): | |
output_slider = ImageSlider(label="Before / After", type="numpy") | |
process_btn.click( | |
fn=process_image, | |
inputs=[input_image], | |
outputs=output_slider | |
) | |
demo.launch(debug=True) |