Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,216 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from PIL import Image
|
2 |
+
from rembg import remove
|
3 |
+
import cairosvg
|
4 |
+
import io
|
5 |
+
import numpy as np
|
6 |
+
from sklearn.cluster import KMeans
|
7 |
+
from PIL import Image, ImageDraw, ImageFont
|
8 |
+
import random
|
9 |
+
|
10 |
+
def generate(logo, Vtubername):
|
11 |
+
def extract_dominant_colors(img, num_colors=3, ignore_edges=True):
|
12 |
+
if img.mode == 'RGBA':
|
13 |
+
image = img.convert('RGB')
|
14 |
+
else:
|
15 |
+
image = img
|
16 |
+
|
17 |
+
image = image.resize((150, 150))
|
18 |
+
data = np.array(image)
|
19 |
+
|
20 |
+
pixels = data.reshape(-1, 3)
|
21 |
+
|
22 |
+
if ignore_edges:
|
23 |
+
edge_pixels = np.concatenate([data[0, :, :], data[-1, :, :], data[:, 0, :], data[:, -1, :]], axis=0)
|
24 |
+
edge_colors, counts = np.unique(edge_pixels, axis=0, return_counts=True)
|
25 |
+
background_color = edge_colors[counts.argmax()]
|
26 |
+
pixels = pixels[~np.all(pixels == background_color, axis=1)]
|
27 |
+
if len(pixels) == 0:
|
28 |
+
return np.array([background_color,np.array([60,60,60]),np.array([255,255,255])])
|
29 |
+
elif len(pixels) == 1:
|
30 |
+
return np.array([pixels[0],np.array([60,60,60]),np.array([255,255,255])])
|
31 |
+
elif len(pixels) == 2:
|
32 |
+
return np.array([pixels[0],pixels[1],np.array([60,60,60])])
|
33 |
+
|
34 |
+
|
35 |
+
|
36 |
+
model = KMeans(n_clusters=3)
|
37 |
+
model.fit(pixels)
|
38 |
+
|
39 |
+
colors = model.cluster_centers_
|
40 |
+
|
41 |
+
colors = colors.round(0).astype(int)
|
42 |
+
|
43 |
+
return colors
|
44 |
+
|
45 |
+
# 使用例
|
46 |
+
dominant_colors = extract_dominant_colors(logo, num_colors=3)
|
47 |
+
template_prime_colors = {
|
48 |
+
"black color": [0, 0, 0],
|
49 |
+
"white": [255, 255, 255],
|
50 |
+
"red": [255, 0, 0],
|
51 |
+
"lightgreen": [0, 255, 0],
|
52 |
+
"blue": [0, 0, 255],
|
53 |
+
"yellow": [255, 255, 0],
|
54 |
+
"mustard color": [255, 204, 34],
|
55 |
+
"lightblue": [0, 255, 255],
|
56 |
+
"pink": [255, 0, 255],
|
57 |
+
"gray": [128, 128, 128],
|
58 |
+
"maroon": [128, 0, 0],
|
59 |
+
"olive": [128, 128, 0],
|
60 |
+
"green": [0, 128, 0],
|
61 |
+
"purple": [128, 0, 128],
|
62 |
+
"navy": [0, 0, 128],
|
63 |
+
"orange": [255, 165, 0],
|
64 |
+
"bluegreen": [0, 128, 128],
|
65 |
+
"lightpurple": [128, 128, 255],
|
66 |
+
"skyblue color": [0, 128, 255],
|
67 |
+
"brown": [139,69,19],
|
68 |
+
}
|
69 |
+
_primary_color = dominant_colors[0]
|
70 |
+
# get closest color name
|
71 |
+
closest_color = "black color"
|
72 |
+
for color in template_prime_colors:
|
73 |
+
if np.linalg.norm(np.array(template_prime_colors[color]) - _primary_color) < np.linalg.norm(np.array(template_prime_colors[closest_color]) - _primary_color):
|
74 |
+
closest_color = color
|
75 |
+
primary_color = closest_color
|
76 |
+
print(primary_color)
|
77 |
+
secondary_color=str("rgb("+str(dominant_colors[1][0])+", "+str(dominant_colors[1][1])+", "+str(dominant_colors[1][2])+")")
|
78 |
+
third_color=str("rgb("+str(dominant_colors[2][0])+", "+str(dominant_colors[2][1])+", "+str(dominant_colors[2][2])+")")
|
79 |
+
exit()
|
80 |
+
import requests
|
81 |
+
import os
|
82 |
+
sdkey = os.environ["sdkey"]
|
83 |
+
|
84 |
+
response = requests.post(
|
85 |
+
f"https://api.stability.ai/v2beta/stable-image/generate/sd3",
|
86 |
+
headers={
|
87 |
+
"authorization": f"Bearer "+sdkey,
|
88 |
+
"accept": "image/*"
|
89 |
+
},
|
90 |
+
files={"none": ''},
|
91 |
+
data={
|
92 |
+
"model": "sd3",
|
93 |
+
"prompt": "pop sweety cute kawaii font anime title logo drawn by adobe illustorator. Logo for kids amime. The title logo text is \""+Vtubername+"\""+", The logo text color:"+primary_color + ". Single Logo only.",
|
94 |
+
"negative_prompt": "subtitle,face, ruby text, subscript, superscript, multiple titles, character, ugly, blurry, dirty, character face, face, watermark, low res, cropped, worst quality, jpeg artifacts, , picture frame, out of frame,animal, person face, low-res, blurry, blur, out of focus, disgusting",
|
95 |
+
"output_format": "jpeg",
|
96 |
+
},
|
97 |
+
)
|
98 |
+
image = None
|
99 |
+
if response.status_code == 200:
|
100 |
+
image = response.content
|
101 |
+
else:
|
102 |
+
raise Exception(str(response.json()))
|
103 |
+
image = Image.open(io.BytesIO(response.content))
|
104 |
+
title_logo=remove(image)
|
105 |
+
|
106 |
+
|
107 |
+
from huggingface_hub import InferenceClient
|
108 |
+
|
109 |
+
client = InferenceClient(model="mistralai/Mixtral-8x7B-Instruct-v0.1")
|
110 |
+
|
111 |
+
output = client.text_generation("Make this english to Japanese Hiragana. ex. Robert->はろー HuggingFace->はぎんぐふぇいす "+Vtubername+"->")
|
112 |
+
hiragana = ""
|
113 |
+
for char in output:
|
114 |
+
if '\u3040' <= char <= '\u309f':
|
115 |
+
hiragana += char
|
116 |
+
|
117 |
+
|
118 |
+
|
119 |
+
def get_brightness(color):
|
120 |
+
red, green, blue = color
|
121 |
+
return (red * 0.299 + green * 0.587 + blue * 0.114) / 255
|
122 |
+
|
123 |
+
brighter_color = secondary_color if get_brightness(dominant_colors[1]) > get_brightness(dominant_colors[2]) else third_color
|
124 |
+
darker_cplor = secondary_color if get_brightness(dominant_colors[1]) < get_brightness(dominant_colors[2]) else third_color
|
125 |
+
|
126 |
+
font_color=brighter_color
|
127 |
+
|
128 |
+
font_size=100
|
129 |
+
stroke_width=int(100*0.1)
|
130 |
+
stroke_color=darker_cplor
|
131 |
+
# Load the font
|
132 |
+
font = ImageFont.truetype("oshigo.otf", size=font_size)
|
133 |
+
|
134 |
+
japanese_text = hiragana
|
135 |
+
|
136 |
+
# Image setup
|
137 |
+
tile_width, tile_height = int(font_size*1.4), int(font_size*1.4) # Size of individual tiles
|
138 |
+
num_tiles = len(japanese_text)
|
139 |
+
total_width = tile_width * num_tiles
|
140 |
+
total_height = tile_height
|
141 |
+
|
142 |
+
# Create a new blank image
|
143 |
+
result_image = Image.new('RGBA', (total_width, total_height), (0, 0, 0, 0))
|
144 |
+
draw = ImageDraw.Draw(result_image)
|
145 |
+
|
146 |
+
for i, char in enumerate(japanese_text):
|
147 |
+
# Create an image for each character with transparency
|
148 |
+
tile_image = Image.new('RGBA', (tile_width, tile_height), (0, 0, 0, 0))
|
149 |
+
tile_draw = ImageDraw.Draw(tile_image)
|
150 |
+
# Calculate text position: random within the tile
|
151 |
+
text_width, text_height = draw.textsize(char, font=font)
|
152 |
+
x = random.randint(0, (tile_width - text_width)//1.25)
|
153 |
+
y = random.randint(0, (tile_height - text_height)//1.25)
|
154 |
+
# Draw text on the tile
|
155 |
+
tile_draw.text((x, y), char, font=font, fill="white", stroke_width=stroke_width, stroke_fill=stroke_color)
|
156 |
+
|
157 |
+
# Paste the tile into the result image
|
158 |
+
result_image.paste(tile_image, (i * tile_width, 0), tile_image)
|
159 |
+
|
160 |
+
# Save or display the image
|
161 |
+
caption = result_image
|
162 |
+
|
163 |
+
def resize_caption_to_logo(logo, caption):
|
164 |
+
logo_width = logo.width
|
165 |
+
target_caption_width = int(0.6 * logo_width)
|
166 |
+
|
167 |
+
if caption.width > target_caption_width:
|
168 |
+
aspect_ratio = caption.height / caption.width
|
169 |
+
new_height = int(target_caption_width * aspect_ratio)
|
170 |
+
|
171 |
+
resized_caption = caption.resize((target_caption_width, new_height), Image.ANTIALIAS)
|
172 |
+
return resized_caption
|
173 |
+
else:
|
174 |
+
return caption
|
175 |
+
caption = resize_caption_to_logo(logo, caption)
|
176 |
+
|
177 |
+
|
178 |
+
center=((title_logo.width - caption.width) // 2,title_logo.height//2)
|
179 |
+
bottom=(title_logo.width-caption.width)//2,int(title_logo.height-caption.height-40)
|
180 |
+
lower_right=(title_logo.width-caption.width,int(title_logo.height-caption.height-40))
|
181 |
+
upper_right=(title_logo.width-caption.width,int(caption.height+40))
|
182 |
+
|
183 |
+
|
184 |
+
# Define the possible positions
|
185 |
+
positions = [
|
186 |
+
("center", center),
|
187 |
+
("bottom", bottom),
|
188 |
+
("lower_right", lower_right),
|
189 |
+
("upper_right", upper_right),
|
190 |
+
]
|
191 |
+
|
192 |
+
# Randomly select a position
|
193 |
+
position, coordinates = random.choice(positions)
|
194 |
+
|
195 |
+
# Paste the caption at the selected position
|
196 |
+
title_logo.paste(caption, coordinates, caption)
|
197 |
+
return title_logo
|
198 |
+
|
199 |
+
css="""
|
200 |
+
.gradio-container{
|
201 |
+
background-color: #fff;
|
202 |
+
background-image:
|
203 |
+
radial-gradient(#b4f3ea 0%, transparent 30%),
|
204 |
+
radial-gradient(#ffffcc 0%, transparent 30%); background-size: 40px 40px;
|
205 |
+
background-position: 0 0, 20px 20px;
|
206 |
+
}
|
207 |
+
h1{
|
208 |
+
font-size: 400%!important;
|
209 |
+
background: linear-gradient(to bottom, pink, white);
|
210 |
+
-webkit-background-clip: text;
|
211 |
+
-webkit-text-fill-color: transparent;
|
212 |
+
-webkit-text-stroke: 2px pink;
|
213 |
+
-webkit-text-stroke-width: 2px;
|
214 |
+
-webkit-text-stroke-color: pink;
|
215 |
+
}
|
216 |
+
"""
|