Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,6 +3,7 @@ from jax import pmap
|
|
3 |
from flax.training.common_utils import shard
|
4 |
import jax
|
5 |
import jax.numpy as jnp
|
|
|
6 |
|
7 |
from pathlib import Path
|
8 |
from PIL import Image
|
@@ -44,12 +45,7 @@ def sd2_inference(pipeline, prompts, params, seed = 42, num_inference_steps = 50
|
|
44 |
images = images.reshape((images.shape[0] * images.shape[1], ) + images.shape[-3:])
|
45 |
images = pipeline.numpy_to_pil(images)
|
46 |
return images
|
47 |
-
|
48 |
-
w,h = imgs[0].size
|
49 |
-
grid = Image.new('RGB', size=(cols*w, rows*h))
|
50 |
-
for i, img in enumerate(imgs): grid.paste(img, box=(i%cols*w, i//cols*h))
|
51 |
-
grid = grid.resize( (grid.size[0]//down_sample, grid.size[1]//down_sample) )
|
52 |
-
return grid
|
53 |
|
54 |
|
55 |
HF_ACCESS_TOKEN = os.environ["HFAUTH"]
|
@@ -64,4 +60,60 @@ pipeline, params = FlaxStableDiffusionPipeline.from_pretrained(
|
|
64 |
)
|
65 |
|
66 |
prompts = ["apple"] * 1
|
67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
from flax.training.common_utils import shard
|
4 |
import jax
|
5 |
import jax.numpy as jnp
|
6 |
+
import gradio as gr
|
7 |
|
8 |
from pathlib import Path
|
9 |
from PIL import Image
|
|
|
45 |
images = images.reshape((images.shape[0] * images.shape[1], ) + images.shape[-3:])
|
46 |
images = pipeline.numpy_to_pil(images)
|
47 |
return images
|
48 |
+
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
|
51 |
HF_ACCESS_TOKEN = os.environ["HFAUTH"]
|
|
|
60 |
)
|
61 |
|
62 |
prompts = ["apple"] * 1
|
63 |
+
|
64 |
+
|
65 |
+
|
66 |
+
|
67 |
+
|
68 |
+
|
69 |
+
|
70 |
+
|
71 |
+
|
72 |
+
def generate_image(dense_class_vector=None, int_index=None, noise_seed_vector=None, truncation=0.4):
|
73 |
+
seed = int(noise_seed_vector.sum().item()) if noise_seed_vector is not None else None
|
74 |
+
noise_vector = truncated_noise_sample(truncation=truncation, batch_size=1, seed=seed)
|
75 |
+
noise_vector = torch.from_numpy(noise_vector)
|
76 |
+
if int_index is not None:
|
77 |
+
class_vector = one_hot_from_int([int_index], batch_size=1)
|
78 |
+
class_vector = torch.from_numpy(class_vector)
|
79 |
+
dense_class_vector = gan_model.embeddings(class_vector)
|
80 |
+
else:
|
81 |
+
if isinstance(dense_class_vector, np.ndarray):
|
82 |
+
dense_class_vector = torch.tensor(dense_class_vector)
|
83 |
+
dense_class_vector = dense_class_vector.view(1, 128)
|
84 |
+
|
85 |
+
input_vector = torch.cat([noise_vector, dense_class_vector], dim=1)
|
86 |
+
|
87 |
+
# Generate an image
|
88 |
+
with torch.no_grad():
|
89 |
+
output = gan_model.generator(input_vector, truncation)
|
90 |
+
output = output.cpu().numpy()
|
91 |
+
output = output.transpose((0, 2, 3, 1))
|
92 |
+
output = ((output + 1.0) / 2.0) * 256
|
93 |
+
output.clip(0, 255, out=output)
|
94 |
+
output = np.asarray(np.uint8(output[0]), dtype=np.uint8)
|
95 |
+
return output
|
96 |
+
|
97 |
+
|
98 |
+
|
99 |
+
def text_to_image(text):
|
100 |
+
images = sd2_inference(pipeline, [text], params, seed = 42, num_inference_steps = 5 )
|
101 |
+
img = images[0]
|
102 |
+
return img
|
103 |
+
|
104 |
+
examples = ["apple",
|
105 |
+
"banana",
|
106 |
+
"chocolate"]
|
107 |
+
|
108 |
+
if __name__ == '__main__':
|
109 |
+
interFace = gr.Interface(fn=text_to_image,
|
110 |
+
inputs=gr.inputs.Textbox(placeholder="Enter the text to Encode to an image", label="Text "
|
111 |
+
"query",
|
112 |
+
lines=1),
|
113 |
+
outputs=gr.outputs.Image(type="auto", label="Generated Image"),
|
114 |
+
verbose=True,
|
115 |
+
examples=examples,
|
116 |
+
title="Generate Image from Text",
|
117 |
+
description="",
|
118 |
+
theme="huggingface")
|
119 |
+
interFace.launch()
|