testing / app.py
gofilipa's picture
updating with bedtime story code
beda32e
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, TextDataset, DataCollatorForLanguageModeling, Trainer, TrainingArguments, pipeline
from accelerate import Accelerator
accelerator = Accelerator(cpu=True)
# def greet(name):
# return "Hello " + name + "!!"
tokenizer = accelerator.prepare(AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-125m"))
model = accelerator.prepare(AutoModelForCausalLM.from_pretrained("EleutherAI/gpt-neo-125m"))
def plex(input_text):
mnputs = tokenizer(input_text, return_tensors='pt')
prediction = model.generate(mnputs['input_ids'], min_length=20, max_length=150, num_return_sequences=1)
lines = tokenizer.decode(prediction[0]).splitlines()
return lines[0]
iface=gr.Interface(
fn=plex,
inputs=gr.Textbox(label="Prompt", value="Once upon a"),
outputs=gr.Textbox(label="Generated_Text"),
title="GPT-Neo-125M",
description="Prompt"
)
iface.queue(max_size=1,api_open=False)
iface.launch(max_threads=1)
# iface = gr.Interface(fn=greet, inputs="text", outputs="text")
# iface.launch()