Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,366 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Shakespeare Text Generator - Hugging Face Gradio App
|
| 3 |
+
Trained GPT-2 model (124M params)
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
import gradio as gr
|
| 7 |
+
import torch
|
| 8 |
+
import tiktoken
|
| 9 |
+
import os
|
| 10 |
+
from dataclasses import dataclass
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
# GPT Model Architecture
|
| 14 |
+
@dataclass
|
| 15 |
+
class GPTConfig:
|
| 16 |
+
block_size: int = 1024
|
| 17 |
+
vocab_size: int = 50257
|
| 18 |
+
n_layer: int = 12
|
| 19 |
+
n_head: int = 12
|
| 20 |
+
n_embd: int = 768
|
| 21 |
+
dropout: float = 0.0
|
| 22 |
+
bias: bool = True
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
import torch.nn as nn
|
| 26 |
+
from torch.nn import functional as F
|
| 27 |
+
import math
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
class CausalSelfAttention(nn.Module):
|
| 31 |
+
def __init__(self, config):
|
| 32 |
+
super().__init__()
|
| 33 |
+
assert config.n_embd % config.n_head == 0
|
| 34 |
+
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, bias=config.bias)
|
| 35 |
+
self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=config.bias)
|
| 36 |
+
self.attn_dropout = nn.Dropout(config.dropout)
|
| 37 |
+
self.resid_dropout = nn.Dropout(config.dropout)
|
| 38 |
+
self.n_head = config.n_head
|
| 39 |
+
self.n_embd = config.n_embd
|
| 40 |
+
self.dropout = config.dropout
|
| 41 |
+
self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size))
|
| 42 |
+
.view(1, 1, config.block_size, config.block_size))
|
| 43 |
+
self.c_proj.NANOGPT_SCALE_INIT = 1
|
| 44 |
+
|
| 45 |
+
def forward(self, x):
|
| 46 |
+
B, T, C = x.size()
|
| 47 |
+
qkv = self.c_attn(x)
|
| 48 |
+
q, k, v = qkv.split(self.n_embd, dim=2)
|
| 49 |
+
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
|
| 50 |
+
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
|
| 51 |
+
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
|
| 52 |
+
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
|
| 53 |
+
att = att.masked_fill(self.bias[:, :, :T, :T] == 0, float('-inf'))
|
| 54 |
+
att = F.softmax(att, dim=-1)
|
| 55 |
+
att = self.attn_dropout(att)
|
| 56 |
+
y = att @ v
|
| 57 |
+
y = y.transpose(1, 2).contiguous().view(B, T, C)
|
| 58 |
+
y = self.resid_dropout(self.c_proj(y))
|
| 59 |
+
return y
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
class MLP(nn.Module):
|
| 63 |
+
def __init__(self, config):
|
| 64 |
+
super().__init__()
|
| 65 |
+
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd, bias=config.bias)
|
| 66 |
+
self.gelu = nn.GELU(approximate='tanh')
|
| 67 |
+
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd, bias=config.bias)
|
| 68 |
+
self.dropout = nn.Dropout(config.dropout)
|
| 69 |
+
self.c_proj.NANOGPT_SCALE_INIT = 1
|
| 70 |
+
|
| 71 |
+
def forward(self, x):
|
| 72 |
+
x = self.c_fc(x)
|
| 73 |
+
x = self.gelu(x)
|
| 74 |
+
x = self.c_proj(x)
|
| 75 |
+
x = self.dropout(x)
|
| 76 |
+
return x
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
class Block(nn.Module):
|
| 80 |
+
def __init__(self, config):
|
| 81 |
+
super().__init__()
|
| 82 |
+
self.ln_1 = nn.LayerNorm(config.n_embd)
|
| 83 |
+
self.attn = CausalSelfAttention(config)
|
| 84 |
+
self.ln_2 = nn.LayerNorm(config.n_embd)
|
| 85 |
+
self.mlp = MLP(config)
|
| 86 |
+
|
| 87 |
+
def forward(self, x):
|
| 88 |
+
x = x + self.attn(self.ln_1(x))
|
| 89 |
+
x = x + self.mlp(self.ln_2(x))
|
| 90 |
+
return x
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
class GPT(nn.Module):
|
| 94 |
+
def __init__(self, config):
|
| 95 |
+
super().__init__()
|
| 96 |
+
self.config = config
|
| 97 |
+
self.transformer = nn.ModuleDict(dict(
|
| 98 |
+
wte=nn.Embedding(config.vocab_size, config.n_embd),
|
| 99 |
+
wpe=nn.Embedding(config.block_size, config.n_embd),
|
| 100 |
+
drop=nn.Dropout(config.dropout),
|
| 101 |
+
h=nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
|
| 102 |
+
ln_f=nn.LayerNorm(config.n_embd),
|
| 103 |
+
))
|
| 104 |
+
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
| 105 |
+
self.transformer.wte.weight = self.lm_head.weight
|
| 106 |
+
self.apply(self._init_weights)
|
| 107 |
+
|
| 108 |
+
def _init_weights(self, module):
|
| 109 |
+
if isinstance(module, nn.Linear):
|
| 110 |
+
std = 0.02
|
| 111 |
+
if hasattr(module, 'NANOGPT_SCALE_INIT'):
|
| 112 |
+
std *= (2 * self.config.n_layer) ** -0.5
|
| 113 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std=std)
|
| 114 |
+
if module.bias is not None:
|
| 115 |
+
torch.nn.init.zeros_(module.bias)
|
| 116 |
+
elif isinstance(module, nn.Embedding):
|
| 117 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
| 118 |
+
|
| 119 |
+
def forward(self, idx, targets=None):
|
| 120 |
+
device = idx.device
|
| 121 |
+
b, t = idx.size()
|
| 122 |
+
assert t <= self.config.block_size
|
| 123 |
+
pos = torch.arange(0, t, dtype=torch.long, device=device)
|
| 124 |
+
pos_emb = self.transformer.wpe(pos)
|
| 125 |
+
tok_emb = self.transformer.wte(idx)
|
| 126 |
+
x = self.transformer.drop(tok_emb + pos_emb)
|
| 127 |
+
for block in self.transformer.h:
|
| 128 |
+
x = block(x)
|
| 129 |
+
x = self.transformer.ln_f(x)
|
| 130 |
+
if targets is not None:
|
| 131 |
+
logits = self.lm_head(x)
|
| 132 |
+
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1)
|
| 133 |
+
else:
|
| 134 |
+
logits = self.lm_head(x[:, [-1], :])
|
| 135 |
+
loss = None
|
| 136 |
+
return logits, loss
|
| 137 |
+
|
| 138 |
+
@torch.no_grad()
|
| 139 |
+
def generate(self, idx, max_new_tokens, temperature=1.0, top_k=None):
|
| 140 |
+
for _ in range(max_new_tokens):
|
| 141 |
+
idx_cond = idx if idx.size(1) <= self.config.block_size else idx[:, -self.config.block_size:]
|
| 142 |
+
logits, _ = self(idx_cond)
|
| 143 |
+
logits = logits[:, -1, :] / temperature
|
| 144 |
+
if top_k is not None:
|
| 145 |
+
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
|
| 146 |
+
logits[logits < v[:, [-1]]] = -float('Inf')
|
| 147 |
+
probs = F.softmax(logits, dim=-1)
|
| 148 |
+
idx_next = torch.multinomial(probs, num_samples=1)
|
| 149 |
+
idx = torch.cat((idx, idx_next), dim=1)
|
| 150 |
+
return idx
|
| 151 |
+
|
| 152 |
+
|
| 153 |
+
# Load model
|
| 154 |
+
print("Loading model...")
|
| 155 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 156 |
+
config = GPTConfig()
|
| 157 |
+
model = GPT(config)
|
| 158 |
+
|
| 159 |
+
# Load checkpoint
|
| 160 |
+
checkpoint_path = "model_quantized.pt"
|
| 161 |
+
if os.path.exists(checkpoint_path):
|
| 162 |
+
checkpoint = torch.load(checkpoint_path, map_location=device)
|
| 163 |
+
model.load_state_dict(checkpoint['model_state_dict'])
|
| 164 |
+
print(f"✓ Loaded quantized model from {checkpoint_path}")
|
| 165 |
+
print(f" Training loss: {checkpoint.get('loss', 'N/A')}")
|
| 166 |
+
print(f" Model size: 330MB (FP16 quantized)")
|
| 167 |
+
else:
|
| 168 |
+
print("⚠️ Checkpoint not found. Please upload 'model_quantized.pt'")
|
| 169 |
+
|
| 170 |
+
model.to(device)
|
| 171 |
+
model.eval()
|
| 172 |
+
print(f"✓ Model ready on {device}")
|
| 173 |
+
|
| 174 |
+
# Tokenizer
|
| 175 |
+
enc = tiktoken.get_encoding('gpt2')
|
| 176 |
+
|
| 177 |
+
|
| 178 |
+
# ---- Derived Stats (dynamic, for UI) ----
|
| 179 |
+
try:
|
| 180 |
+
model_params = sum(p.numel() for p in model.parameters())
|
| 181 |
+
model_params_m = model_params / 1e6
|
| 182 |
+
except Exception:
|
| 183 |
+
model_params = None
|
| 184 |
+
model_params_m = None
|
| 185 |
+
|
| 186 |
+
training_loss = None
|
| 187 |
+
training_step = None
|
| 188 |
+
if 'checkpoint' in locals():
|
| 189 |
+
training_loss = checkpoint.get('loss', None)
|
| 190 |
+
training_step = checkpoint.get('step', None)
|
| 191 |
+
|
| 192 |
+
def build_stats_md() -> str:
|
| 193 |
+
params_line = f"- **Parameters**: {model_params:,} ({model_params_m:.0f}M)" if model_params is not None else "- **Parameters**: 124M"
|
| 194 |
+
loss_line = f"- **Training Loss**: {training_loss:.6f}" if isinstance(training_loss, (float, int)) else "- **Training Loss**: N/A"
|
| 195 |
+
step_line = f"- **Training Step**: {training_step}" if training_step is not None else "- **Training Step**: N/A"
|
| 196 |
+
return f"""
|
| 197 |
+
### 📊 Model Details
|
| 198 |
+
{params_line}
|
| 199 |
+
- **Architecture**: GPT-2 (Decoder-only Transformer)
|
| 200 |
+
{loss_line}
|
| 201 |
+
{step_line}
|
| 202 |
+
- **Model Format**: FP16 quantized (≈330MB)
|
| 203 |
+
- **Device**: {device.upper()}
|
| 204 |
+
""".strip()
|
| 205 |
+
|
| 206 |
+
|
| 207 |
+
def generate_text(prompt, max_tokens=100, temperature=0.8, top_k=50):
|
| 208 |
+
"""Generate text from a prompt"""
|
| 209 |
+
|
| 210 |
+
if not prompt:
|
| 211 |
+
return "⚠️ Please enter a prompt!"
|
| 212 |
+
|
| 213 |
+
try:
|
| 214 |
+
# Tokenize
|
| 215 |
+
tokens = enc.encode(prompt)
|
| 216 |
+
tokens = torch.tensor(tokens, dtype=torch.long).unsqueeze(0).to(device)
|
| 217 |
+
|
| 218 |
+
# Generate
|
| 219 |
+
with torch.no_grad():
|
| 220 |
+
generated = model.generate(
|
| 221 |
+
tokens,
|
| 222 |
+
max_new_tokens=max_tokens,
|
| 223 |
+
temperature=temperature,
|
| 224 |
+
top_k=top_k if (top_k and int(top_k) > 0) else None
|
| 225 |
+
)
|
| 226 |
+
|
| 227 |
+
# Decode
|
| 228 |
+
generated_text = enc.decode(generated[0].tolist())
|
| 229 |
+
|
| 230 |
+
return generated_text
|
| 231 |
+
|
| 232 |
+
except Exception as e:
|
| 233 |
+
return f"❌ Error: {str(e)}"
|
| 234 |
+
|
| 235 |
+
|
| 236 |
+
# Example prompts
|
| 237 |
+
examples = [
|
| 238 |
+
["First Citizen:", 150, 0.8, 50],
|
| 239 |
+
["ROMEO:", 150, 0.8, 50],
|
| 240 |
+
["To be, or not to be,", 200, 0.7, 40],
|
| 241 |
+
["What light through yonder window breaks?", 150, 0.8, 50],
|
| 242 |
+
["Friends, Romans, countrymen,", 150, 0.8, 50],
|
| 243 |
+
]
|
| 244 |
+
|
| 245 |
+
|
| 246 |
+
# Gradio Interface with Teal Theme
|
| 247 |
+
with gr.Blocks(
|
| 248 |
+
title="Shakespeare Text Generator",
|
| 249 |
+
theme=gr.themes.Soft(
|
| 250 |
+
primary_hue="teal",
|
| 251 |
+
secondary_hue="cyan",
|
| 252 |
+
neutral_hue="slate"
|
| 253 |
+
),
|
| 254 |
+
css="""
|
| 255 |
+
.gradio-container {
|
| 256 |
+
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
|
| 257 |
+
}
|
| 258 |
+
.gr-button-primary {
|
| 259 |
+
background: linear-gradient(135deg, #14b8a6 0%, #0d9488 100%) !important;
|
| 260 |
+
border: none !important;
|
| 261 |
+
color: white !important;
|
| 262 |
+
font-weight: 600 !important;
|
| 263 |
+
}
|
| 264 |
+
.gr-button-primary:hover {
|
| 265 |
+
background: linear-gradient(135deg, #0d9488 0%, #0f766e 100%) !important;
|
| 266 |
+
transform: translateY(-1px);
|
| 267 |
+
box-shadow: 0 4px 12px rgba(20, 184, 166, 0.3) !important;
|
| 268 |
+
}
|
| 269 |
+
h1 {
|
| 270 |
+
color: #0f766e !important;
|
| 271 |
+
text-align: center;
|
| 272 |
+
}
|
| 273 |
+
.badge {
|
| 274 |
+
display: inline-block;
|
| 275 |
+
padding: 6px 10px;
|
| 276 |
+
margin: 4px 6px 0 0;
|
| 277 |
+
border-radius: 8px;
|
| 278 |
+
background: #ecfeff;
|
| 279 |
+
color: #0f766e;
|
| 280 |
+
font-size: 12px;
|
| 281 |
+
border: 1px solid #ccfbf1;
|
| 282 |
+
}
|
| 283 |
+
"""
|
| 284 |
+
) as demo:
|
| 285 |
+
gr.Markdown(f"""
|
| 286 |
+
# 🎭 Shakespeare Text Generator
|
| 287 |
+
|
| 288 |
+
<div>
|
| 289 |
+
<span class="badge">Architecture: GPT-2</span>
|
| 290 |
+
<span class="badge">Device: {device.upper()}</span>
|
| 291 |
+
<span class="badge">Quantized: FP16</span>
|
| 292 |
+
<span class="badge">Params: {int(model_params_m):d}M</span>
|
| 293 |
+
</div>
|
| 294 |
+
|
| 295 |
+
Enter a Shakespearean prompt and watch the AI continue the text!
|
| 296 |
+
""")
|
| 297 |
+
|
| 298 |
+
with gr.Row():
|
| 299 |
+
with gr.Column(scale=2):
|
| 300 |
+
prompt_input = gr.Textbox(
|
| 301 |
+
label="Prompt",
|
| 302 |
+
placeholder="Enter a Shakespearean prompt (e.g., 'First Citizen:', 'ROMEO:', 'To be, or not to be,')",
|
| 303 |
+
lines=3
|
| 304 |
+
)
|
| 305 |
+
|
| 306 |
+
with gr.Accordion("Advanced Settings", open=False):
|
| 307 |
+
with gr.Row():
|
| 308 |
+
max_tokens = gr.Slider(
|
| 309 |
+
minimum=50,
|
| 310 |
+
maximum=600,
|
| 311 |
+
value=150,
|
| 312 |
+
step=10,
|
| 313 |
+
label="Max Tokens"
|
| 314 |
+
)
|
| 315 |
+
temperature = gr.Slider(
|
| 316 |
+
minimum=0.5,
|
| 317 |
+
maximum=1.5,
|
| 318 |
+
value=0.8,
|
| 319 |
+
step=0.1,
|
| 320 |
+
label="Temperature (creativity)"
|
| 321 |
+
)
|
| 322 |
+
top_k = gr.Slider(
|
| 323 |
+
minimum=0,
|
| 324 |
+
maximum=100,
|
| 325 |
+
value=50,
|
| 326 |
+
step=10,
|
| 327 |
+
label="Top-K (diversity) (0 disables)"
|
| 328 |
+
)
|
| 329 |
+
|
| 330 |
+
generate_btn = gr.Button("✨ Generate Shakespeare", variant="primary", size="lg")
|
| 331 |
+
|
| 332 |
+
with gr.Column(scale=2):
|
| 333 |
+
output_text = gr.Textbox(
|
| 334 |
+
label="Generated Text",
|
| 335 |
+
lines=15,
|
| 336 |
+
show_copy_button=True
|
| 337 |
+
)
|
| 338 |
+
|
| 339 |
+
gr.Markdown(build_stats_md())
|
| 340 |
+
|
| 341 |
+
gr.Markdown("""
|
| 342 |
+
### 💡 Tips:
|
| 343 |
+
- **Temperature**: Lower (0.5-0.7) = more focused, Higher (0.9-1.2) = more creative
|
| 344 |
+
- **Top-K**: Controls vocabulary diversity (40-60 recommended)
|
| 345 |
+
- **Prompts**: Try character names (ROMEO:, JULIET:) or famous phrases
|
| 346 |
+
""")
|
| 347 |
+
|
| 348 |
+
gr.Examples(
|
| 349 |
+
examples=examples,
|
| 350 |
+
inputs=[prompt_input, max_tokens, temperature, top_k],
|
| 351 |
+
label="Example Prompts"
|
| 352 |
+
)
|
| 353 |
+
|
| 354 |
+
gr.Markdown(build_stats_md())
|
| 355 |
+
|
| 356 |
+
# Connect button
|
| 357 |
+
generate_btn.click(
|
| 358 |
+
fn=generate_text,
|
| 359 |
+
inputs=[prompt_input, max_tokens, temperature, top_k],
|
| 360 |
+
outputs=output_text
|
| 361 |
+
)
|
| 362 |
+
|
| 363 |
+
|
| 364 |
+
if __name__ == "__main__":
|
| 365 |
+
demo.launch()
|
| 366 |
+
|