Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| from PIL import Image | |
| import numpy as np | |
| import tensorflow as tf | |
| from transformers import SegformerFeatureExtractor, TFSegformerForSemanticSegmentation | |
| import os | |
| feature_extractor = SegformerFeatureExtractor.from_pretrained( | |
| "nvidia/segformer-b1-finetuned-cityscapes-1024-1024" | |
| ) | |
| model = TFSegformerForSemanticSegmentation.from_pretrained( | |
| "nvidia/segformer-b1-finetuned-cityscapes-1024-1024" | |
| ) | |
| def ade_palette(): | |
| """ADE20K palette that maps each class to RGB values.""" | |
| return [ | |
| [204, 87, 92], | |
| [112, 185, 212], | |
| [45, 189, 106], | |
| [234, 123, 67], | |
| [78, 56, 123], | |
| [210, 32, 89], | |
| [90, 180, 56], | |
| [155, 102, 200], | |
| [33, 147, 176], | |
| [255, 183, 76], | |
| [67, 123, 89], | |
| [190, 60, 45], | |
| [134, 112, 200], | |
| [56, 45, 189], | |
| [200, 56, 123], | |
| [87, 92, 204], | |
| [120, 56, 123], | |
| [45, 78, 123], | |
| [156, 200, 56] | |
| ] | |
| labels_list = [] | |
| with open(r'labels.txt', 'r') as fp: | |
| for line in fp: | |
| labels_list.append(line[:-1]) | |
| colormap = np.asarray(ade_palette()) | |
| def label_to_color_image(label): | |
| if label.ndim != 2: | |
| raise ValueError("Expect 2-D input label") | |
| if np.max(label) >= len(colormap): | |
| raise ValueError("label value too large.") | |
| return colormap[label] | |
| def sepia(input_text): | |
| # Check if the input text is a valid file path | |
| if not os.path.isfile(input_text): | |
| return "Invalid file path. Please enter a valid image file path." | |
| # Load the image using the input text (assumed to be a path to an image) | |
| input_img = Image.open(input_text) | |
| inputs = feature_extractor(images=input_img, return_tensors="tf") | |
| outputs = model(**inputs) | |
| logits = outputs.logits | |
| logits = tf.transpose(logits, [0, 2, 3, 1]) | |
| logits = tf.image.resize( | |
| logits, input_img.size[::-1] | |
| ) | |
| seg = tf.math.argmax(logits, axis=-1)[0] | |
| color_seg = np.zeros( | |
| (seg.shape[0], seg.shape[1], 3), dtype=np.uint8 | |
| ) | |
| for label, color in enumerate(colormap): | |
| color_seg[seg.numpy() == label, :] = color | |
| pred_img = np.array(input_img) * 0.5 + color_seg * 0.5 | |
| pred_img = pred_img.astype(np.uint8) | |
| # Convert the image array to a Pillow (PIL) image | |
| pred_img = Image.fromarray(pred_img) | |
| return pred_img | |
| # Define the Gradio interface | |
| iface = gr.Interface(fn=sepia, inputs="image", outputs="image") | |
| # Launch the Gradio app | |
| iface.launch() | |