3dtest / tools /misc /browse_dataset.py
giantmonkeyTC
mm2
c2ca15f
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
from os import path as osp
from mmengine.config import Config, DictAction
from mmengine.registry import init_default_scope
from mmengine.utils import ProgressBar, mkdir_or_exist
from mmdet3d.registry import DATASETS, VISUALIZERS
from mmdet3d.utils import replace_ceph_backend
def parse_args():
parser = argparse.ArgumentParser(description='Browse a dataset')
parser.add_argument('config', help='train config file path')
parser.add_argument(
'--output-dir',
default=None,
type=str,
help='If there is no display interface, you can save it')
parser.add_argument('--not-show', default=False, action='store_true')
parser.add_argument(
'--show-interval',
type=float,
default=2,
help='the interval of show (s)')
parser.add_argument(
'--task',
type=str,
choices=[
'mono_det', 'multi-view_det', 'lidar_det', 'lidar_seg',
'multi-modality_det'
],
help='Determine the visualization method depending on the task.')
parser.add_argument(
'--aug',
action='store_true',
help='Whether to visualize augmented datasets or original dataset.')
parser.add_argument(
'--ceph', action='store_true', help='Use ceph as data storage backend')
parser.add_argument(
'--cfg-options',
nargs='+',
action=DictAction,
help='override some settings in the used config, the key-value pair '
'in xxx=yyy format will be merged into config file. If the value to '
'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
'Note that the quotation marks are necessary and that no white space '
'is allowed.')
args = parser.parse_args()
return args
def build_data_cfg(config_path, aug, cfg_options):
"""Build data config for loading visualization data."""
cfg = Config.fromfile(config_path)
if cfg_options is not None:
cfg.merge_from_dict(cfg_options)
# extract inner dataset of `RepeatDataset` as
# `cfg.train_dataloader.dataset` so we don't
# need to worry about it later
if cfg.train_dataloader.dataset['type'] == 'RepeatDataset':
cfg.train_dataloader.dataset = cfg.train_dataloader.dataset.dataset
# use only first dataset for `ConcatDataset`
if cfg.train_dataloader.dataset['type'] == 'ConcatDataset':
cfg.train_dataloader.dataset = cfg.train_dataloader.dataset.datasets[0]
if cfg.train_dataloader.dataset['type'] == 'CBGSDataset':
cfg.train_dataloader.dataset = cfg.train_dataloader.dataset.dataset
train_data_cfg = cfg.train_dataloader.dataset
if aug:
show_pipeline = cfg.train_pipeline
else:
show_pipeline = cfg.test_pipeline
for i in range(len(cfg.train_pipeline)):
if cfg.train_pipeline[i]['type'] == 'LoadAnnotations3D':
show_pipeline.insert(i, cfg.train_pipeline[i])
# Collect data as well as labels
if cfg.train_pipeline[i]['type'] == 'Pack3DDetInputs':
if show_pipeline[-1]['type'] == 'Pack3DDetInputs':
show_pipeline[-1] = cfg.train_pipeline[i]
else:
show_pipeline.append(cfg.train_pipeline[i])
train_data_cfg['pipeline'] = show_pipeline
return cfg
def main():
args = parse_args()
if args.output_dir is not None:
mkdir_or_exist(args.output_dir)
cfg = build_data_cfg(args.config, args.aug, args.cfg_options)
# TODO: We will unify the ceph support approach with other OpenMMLab repos
if args.ceph:
cfg = replace_ceph_backend(cfg)
init_default_scope(cfg.get('default_scope', 'mmdet3d'))
try:
dataset = DATASETS.build(
cfg.train_dataloader.dataset,
default_args=dict(filter_empty_gt=False))
except TypeError: # seg dataset doesn't have `filter_empty_gt` key
dataset = DATASETS.build(cfg.train_dataloader.dataset)
# configure visualization mode
vis_task = args.task
visualizer = VISUALIZERS.build(cfg.visualizer)
visualizer.dataset_meta = dataset.metainfo
progress_bar = ProgressBar(len(dataset))
for i, item in enumerate(dataset):
# the 3D Boxes in input could be in any of three coordinates
data_input = item['inputs']
data_sample = item['data_samples'].numpy()
out_file = osp.join(
args.output_dir,
f'{i}.jpg') if args.output_dir is not None else None
# o3d_save_path is valid when args.not_show is False
o3d_save_path = osp.join(args.output_dir, f'pc_{i}.png') if (
args.output_dir is not None
and vis_task in ['lidar_det', 'lidar_seg', 'multi-modality_det']
and not args.not_show) else None
visualizer.add_datasample(
'3d visualzier',
data_input,
data_sample=data_sample,
show=not args.not_show,
wait_time=args.show_interval,
out_file=out_file,
o3d_save_path=o3d_save_path,
vis_task=vis_task)
progress_bar.update()
if __name__ == '__main__':
main()