|
|
|
import argparse |
|
|
|
import torch |
|
from mmengine import Config, DictAction |
|
from mmengine.registry import init_default_scope |
|
|
|
from mmdet3d.registry import MODELS |
|
|
|
try: |
|
from mmcv.cnn import get_model_complexity_info |
|
except ImportError: |
|
raise ImportError('Please upgrade mmcv to >0.6.2') |
|
|
|
|
|
def parse_args(): |
|
parser = argparse.ArgumentParser(description='Train a detector') |
|
parser.add_argument('config', help='train config file path') |
|
parser.add_argument( |
|
'--shape', |
|
type=int, |
|
nargs='+', |
|
default=[40000, 4], |
|
help='input point cloud size') |
|
parser.add_argument( |
|
'--modality', |
|
type=str, |
|
default='point', |
|
choices=['point', 'image', 'multi'], |
|
help='input data modality') |
|
parser.add_argument( |
|
'--cfg-options', |
|
nargs='+', |
|
action=DictAction, |
|
help='override some settings in the used config, the key-value pair ' |
|
'in xxx=yyy format will be merged into config file. If the value to ' |
|
'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' |
|
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' |
|
'Note that the quotation marks are necessary and that no white space ' |
|
'is allowed.') |
|
args = parser.parse_args() |
|
return args |
|
|
|
|
|
def main(): |
|
args = parse_args() |
|
|
|
if args.modality == 'point': |
|
assert len(args.shape) == 2, 'invalid input shape' |
|
input_shape = tuple(args.shape) |
|
elif args.modality == 'image': |
|
if len(args.shape) == 1: |
|
input_shape = (3, args.shape[0], args.shape[0]) |
|
elif len(args.shape) == 2: |
|
input_shape = (3, ) + tuple(args.shape) |
|
else: |
|
raise ValueError('invalid input shape') |
|
elif args.modality == 'multi': |
|
raise NotImplementedError( |
|
'FLOPs counter is currently not supported for models with ' |
|
'multi-modality input') |
|
|
|
cfg = Config.fromfile(args.config) |
|
if args.cfg_options is not None: |
|
cfg.merge_from_dict(args.cfg_options) |
|
init_default_scope(cfg.get('default_scope', 'mmdet3d')) |
|
|
|
model = MODELS.build(cfg.model) |
|
if torch.cuda.is_available(): |
|
model.cuda() |
|
model.eval() |
|
|
|
flops, params = get_model_complexity_info(model, input_shape) |
|
split_line = '=' * 30 |
|
print(f'{split_line}\nInput shape: {input_shape}\n' |
|
f'Flops: {flops}\nParams: {params}\n{split_line}') |
|
print('!!!Please be cautious if you use the results in papers. ' |
|
'You may need to check if all ops are supported and verify that the ' |
|
'flops computation is correct.') |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|