|
|
import unittest |
|
|
|
|
|
import torch |
|
|
from mmengine import DefaultScope |
|
|
|
|
|
from mmdet3d.registry import MODELS |
|
|
from mmdet3d.testing import (create_detector_inputs, get_detector_cfg, |
|
|
setup_seed) |
|
|
|
|
|
|
|
|
class TestH3D(unittest.TestCase): |
|
|
|
|
|
def test_h3dnet(self): |
|
|
import mmdet3d.models |
|
|
|
|
|
assert hasattr(mmdet3d.models, 'H3DNet') |
|
|
DefaultScope.get_instance('test_H3DNet', scope_name='mmdet3d') |
|
|
setup_seed(0) |
|
|
voxel_net_cfg = get_detector_cfg('h3dnet/h3dnet_8xb3_scannet-seg.py') |
|
|
model = MODELS.build(voxel_net_cfg) |
|
|
num_gt_instance = 5 |
|
|
packed_inputs = create_detector_inputs( |
|
|
num_gt_instance=num_gt_instance, |
|
|
points_feat_dim=4, |
|
|
bboxes_3d_type='depth', |
|
|
with_pts_semantic_mask=True, |
|
|
with_pts_instance_mask=True) |
|
|
|
|
|
if torch.cuda.is_available(): |
|
|
model = model.cuda() |
|
|
|
|
|
with torch.no_grad(): |
|
|
data = model.data_preprocessor(packed_inputs, True) |
|
|
results = model.forward(**data, mode='predict') |
|
|
self.assertEqual(len(results), 1) |
|
|
self.assertIn('bboxes_3d', results[0].pred_instances_3d) |
|
|
self.assertIn('scores_3d', results[0].pred_instances_3d) |
|
|
self.assertIn('labels_3d', results[0].pred_instances_3d) |
|
|
|
|
|
|
|
|
with torch.no_grad(): |
|
|
losses = model.forward(**data, mode='loss') |
|
|
|
|
|
self.assertGreater(losses['vote_loss'], 0) |
|
|
self.assertGreater(losses['objectness_loss'], 0) |
|
|
self.assertGreater(losses['center_loss'], 0) |
|
|
|