giantmonkeyTC
mm2
c2ca15f
import unittest
import torch
from mmengine import DefaultScope
from mmdet3d.registry import MODELS
from mmdet3d.testing import (create_detector_inputs, get_detector_cfg,
setup_seed)
class TestH3D(unittest.TestCase):
def test_h3dnet(self):
import mmdet3d.models
assert hasattr(mmdet3d.models, 'H3DNet')
DefaultScope.get_instance('test_H3DNet', scope_name='mmdet3d')
setup_seed(0)
voxel_net_cfg = get_detector_cfg('h3dnet/h3dnet_8xb3_scannet-seg.py')
model = MODELS.build(voxel_net_cfg)
num_gt_instance = 5
packed_inputs = create_detector_inputs(
num_gt_instance=num_gt_instance,
points_feat_dim=4,
bboxes_3d_type='depth',
with_pts_semantic_mask=True,
with_pts_instance_mask=True)
if torch.cuda.is_available():
model = model.cuda()
# test simple_test
with torch.no_grad():
data = model.data_preprocessor(packed_inputs, True)
results = model.forward(**data, mode='predict')
self.assertEqual(len(results), 1)
self.assertIn('bboxes_3d', results[0].pred_instances_3d)
self.assertIn('scores_3d', results[0].pred_instances_3d)
self.assertIn('labels_3d', results[0].pred_instances_3d)
# save the memory
with torch.no_grad():
losses = model.forward(**data, mode='loss')
self.assertGreater(losses['vote_loss'], 0)
self.assertGreater(losses['objectness_loss'], 0)
self.assertGreater(losses['center_loss'], 0)