Spaces:
Runtime error
Runtime error
import joblib | |
dt_model = joblib.load('dt_model.joblib') | |
rfc_model = joblib.load('rfc_model.joblib') | |
abc_model = joblib.load('abc_model.joblib') | |
knn_model = joblib.load('knn_model.joblib') | |
from sklearn.metrics.cluster import normalized_mutual_info_score | |
import cv2 | |
import numpy as np | |
def preprocess_image(image): | |
grayscale_img = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) | |
normalized_img = grayscale_img / 255.0 | |
resized_img = cv2.resize(normalized_img, (28,28)) | |
flattened_img = resized_img.flatten() | |
processed_img = np.array([flattened_img]) | |
return processed_img | |
def pred(input1, input2): | |
class_names = ["T-shirt/top", "Trouser", "Pullover", "Dress", "Coat", "Sandal", "Shirt", "Sneaker", "Bag", "Ankle boot"] | |
processed_image = preprocess_image(input1) | |
if input2 == "Decision Tree": | |
preds = dt_model.predict_proba(processed_image)[0] | |
elif input2 == "Random Forest": | |
preds = rfc_model.predict_proba(processed_image)[0] | |
elif input2 == "AdaBoost": | |
preds = abc_model.predict_proba(processed_image)[0] | |
elif input2 == "KNN": | |
preds = knn_model.predict_proba(processed_image)[0] | |
#print(class_names) | |
#print(preds) | |
return {label: float(pred) for label, pred in zip(class_names, preds)} | |
input_module1 = gr.inputs.Image(label = "Input Sample Image") | |
input_module2 = gr.inputs.Dropdown(choices=['Decision Tree', 'Random Forest', 'AdaBoost', 'KNN'], label = "ML Models Dropdown") | |
output_module1 = gr.outputs.Label(label = "Predicted Class") | |
gr.Interface(fn=pred, | |
inputs=[input_module1,input_module2], | |
outputs=output_module1).launch(debug = True) |