Spaces:
Sleeping
Sleeping
import pickle | |
import pandas as pd | |
import shap | |
import gradio as gr | |
import numpy as np | |
import matplotlib.pyplot as plt | |
import matplotlib.cm as cm | |
import matplotlib.colors as mcolors | |
# Load the model from disk | |
loaded_model = pickle.load(open("huggingface_final.sav", 'rb')) | |
# Setup SHAP | |
explainer = shap.Explainer(loaded_model) # PLEASE DO NOT CHANGE THIS. | |
# Hilton Color Palette | |
hilton_blue = "#0057B8" | |
hilton_gold = "#A28F65" | |
hilton_gray = "#B1B3B3" | |
# Custom Colormap for SHAP | |
hilton_cmap = mcolors.LinearSegmentedColormap.from_list("HiltonCmap", [hilton_gold, hilton_blue]) | |
def main_func(Employee, WorkEnvironment, Voice, LearningDevelopment, WellBeing, SupportiveGM): | |
new_row = pd.DataFrame.from_dict({ | |
'WorkEnvironment': WorkEnvironment, | |
'Voice': Voice, | |
'LearningDevelopment': LearningDevelopment, | |
'WellBeing': WellBeing, | |
'SupportiveGM': SupportiveGM | |
}, orient='index').transpose() | |
# Make prediction | |
prob = loaded_model.predict_proba(new_row) | |
shap_values = explainer(new_row) | |
# Generate SHAP plot | |
plt.figure(figsize=(10, 5)) # Adjust the size as needed | |
shap.plots.bar(shap_values[0], max_display=6, show=False) | |
# Apply Hilton style | |
plt.xticks(color="black") | |
plt.yticks(color="black") | |
plt.xlabel("Feature", fontsize=12, color="black") | |
plt.ylabel("SHAP Value", fontsize=12, color="black") | |
plt.title("SHAP Analysis - Feature Importance", fontsize=14, color=hilton_blue) | |
plt.tight_layout() | |
plot = plt.gcf() | |
plt.close() | |
return {"Leave": float(prob[0][0]), "Stay": 1 - float(prob[0][0])}, plot | |
# Custom CSS to Style Sliders | |
custom_css = """ | |
Body { | |
background: ("AppPicture.jpg") no-repeat center center fixed; | |
background-size: cover; | |
} | |
/* Hilton-Themed Sliders */ | |
input[type="range"] { | |
accent-color: #0057B8 !important; /* Hilton Blue */ | |
background: #A28F65 !important; /* Hilton Gold */ | |
} | |
/* Slider Track */ | |
input[type="range"]::-webkit-slider-runnable-track { | |
background: #0057B8 !important; | |
height: 6px; /* Adjust track thickness */ | |
border-radius: 5px; | |
} | |
/* Slider Thumb */ | |
input[type="range"]::-webkit-slider-thumb { | |
background: #A28F65 !important; /* Hilton Gold */ | |
border: 2px solid #B1B3B3 !important; /* Hilton Gray */ | |
width: 16px; | |
height: 16px; | |
border-radius: 50%; | |
} | |
""" | |
# Create the UI | |
title = "**MSBA Team 2 Employee Intent to Stay Predictor**" | |
description1 = """ | |
This app takes five inputs about employees' satisfaction with different aspects of their work and predicts whether the employee intends to stay with the employer or leave. | |
There are two outputs from the app: 1) the predicted probability of stay or leave, 2) SHAP's bar plot which visualizes the extent to which each factor impacts the stay/leave prediction. | |
""" | |
description2 = """ | |
To use the app, adjust the values of the five employee satisfaction factors, and click on Analyze. | |
""" | |
with gr.Blocks(title=title, css=custom_css) as demo: | |
gr.Markdown(f"## {title}") | |
gr.Markdown(description1) | |
gr.Markdown("""---""") | |
gr.Markdown(description2) | |
gr.Markdown("""---""") | |
with gr.Row(): | |
with gr.Column(): | |
WorkEnvironment = gr.Slider(label="Work Environment Score", minimum=1, maximum=5, value=4, step=0.1) | |
Voice = gr.Slider(label="Voice Score", minimum=1, maximum=5, value=4, step=0.1) | |
LearningDevelopment = gr.Slider(label="Learning Development Score", minimum=1, maximum=5, value=4, step=0.1) | |
WellBeing = gr.Slider(label="Well Being Score", minimum=1, maximum=5, value=4, step=0.1) | |
SupportiveGM = gr.Slider(label="Supportive GM Score", minimum=1, maximum=5, value=4, step=0.1) | |
submit_btn = gr.Button("Analyze") | |
with gr.Column(visible=True, scale=1, min_width=600) as output_col: | |
label = gr.Label(label="Predicted Label") | |
local_plot = gr.Plot(label='SHAP Analysis') | |
submit_btn.click( | |
main_func, | |
[WorkEnvironment, Voice, LearningDevelopment, WellBeing, SupportiveGM], | |
[label, local_plot], api_name="Employee_Turnover" | |
) | |
gr.Markdown("### Adjust the sliders above and click 'Analyze' to see the prediction and SHAP analysis.") | |
gr.Markdown("### Click on any of the examples below to see how it works:") | |
gr.Examples([["Median Negative",3.8,3.5,3.6,3.9,3.7], ["Goal Negative",4.8,3.5,3.6,4.9,4.7]], | |
[gr.Textbox(label="Employee"), WorkEnvironment, Voice, LearningDevelopment, WellBeing, SupportiveGM], | |
[label,local_plot], main_func, cache_examples=True) | |
demo.launch(share=True) | |