|
import argparse |
|
import cv2 |
|
import glob |
|
import numpy as np |
|
from collections import OrderedDict |
|
import os |
|
import torch |
|
import requests |
|
|
|
from models.network_swinir import SwinIR as net |
|
from utils import util_calculate_psnr_ssim as util |
|
|
|
|
|
def main(): |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('--task', type=str, default='real_sr', help='classical_sr, lightweight_sr, real_sr, ' |
|
'gray_dn, color_dn, jpeg_car') |
|
parser.add_argument('--scale', type=int, default=4, help='scale factor: 1, 2, 3, 4, 8') |
|
parser.add_argument('--noise', type=int, default=15, help='noise level: 15, 25, 50') |
|
parser.add_argument('--jpeg', type=int, default=40, help='scale factor: 10, 20, 30, 40') |
|
parser.add_argument('--training_patch_size', type=int, default=128, help='patch size used in training SwinIR. ' |
|
'Just used to differentiate two different settings in Table 2 of the paper. ' |
|
'Images are NOT tested patch by patch.') |
|
parser.add_argument('--large_model', action='store_true', default=True, help='use large model, only provided for real image sr') |
|
parser.add_argument('--model_path', type=str, |
|
default='experiments/pretrained_models/003_realSR_BSRGAN_DFOWMFC_s64w8_SwinIR-L_x4_GAN.pth') |
|
parser.add_argument('--folder_lq', type=str, default='./data', help='input low-quality test image folder') |
|
parser.add_argument('--folder_gt', type=str, default=None, help='input ground-truth test image folder') |
|
parser.add_argument('--tile', type=int, default=640, help='Tile size, None for no tile during testing (testing as a whole)') |
|
parser.add_argument('--tile_overlap', type=int, default=32, help='Overlapping of different tiles') |
|
args = parser.parse_args() |
|
|
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
|
|
if os.path.exists(args.model_path): |
|
print(f'loading model from {args.model_path}') |
|
else: |
|
os.makedirs(os.path.dirname(args.model_path), exist_ok=True) |
|
url = 'https://github.com/JingyunLiang/SwinIR/releases/download/v0.0/{}'.format(os.path.basename(args.model_path)) |
|
r = requests.get(url, allow_redirects=True) |
|
print(f'downloading model {args.model_path}') |
|
open(args.model_path, 'wb').write(r.content) |
|
|
|
model = define_model(args) |
|
model.eval() |
|
model = model.to(device) |
|
|
|
|
|
folder, save_dir, border, window_size = setup(args) |
|
os.makedirs(save_dir, exist_ok=True) |
|
test_results = OrderedDict() |
|
test_results['psnr'] = [] |
|
test_results['ssim'] = [] |
|
test_results['psnr_y'] = [] |
|
test_results['ssim_y'] = [] |
|
test_results['psnr_b'] = [] |
|
psnr, ssim, psnr_y, ssim_y, psnr_b = 0, 0, 0, 0, 0 |
|
|
|
for idx, path in enumerate(sorted(glob.glob(os.path.join(folder, '*')))): |
|
|
|
imgname, img_lq, img_gt = get_image_pair(args, path) |
|
img_lq = np.transpose(img_lq if img_lq.shape[2] == 1 else img_lq[:, :, [2, 1, 0]], (2, 0, 1)) |
|
img_lq = torch.from_numpy(img_lq).float().unsqueeze(0).to(device) |
|
|
|
|
|
with torch.no_grad(): |
|
|
|
_, _, h_old, w_old = img_lq.size() |
|
h_pad = (h_old // window_size + 1) * window_size - h_old |
|
w_pad = (w_old // window_size + 1) * window_size - w_old |
|
img_lq = torch.cat([img_lq, torch.flip(img_lq, [2])], 2)[:, :, :h_old + h_pad, :] |
|
img_lq = torch.cat([img_lq, torch.flip(img_lq, [3])], 3)[:, :, :, :w_old + w_pad] |
|
output = test(img_lq, model, args, window_size) |
|
output = output[..., :h_old * args.scale, :w_old * args.scale] |
|
|
|
|
|
output = output.data.squeeze().float().cpu().clamp_(0, 1).numpy() |
|
if output.ndim == 3: |
|
output = np.transpose(output[[2, 1, 0], :, :], (1, 2, 0)) |
|
output = (output * 255.0).round().astype(np.uint8) |
|
cv2.imwrite(f'{save_dir}/{imgname}.png', output) |
|
|
|
|
|
if img_gt is not None: |
|
img_gt = (img_gt * 255.0).round().astype(np.uint8) |
|
img_gt = img_gt[:h_old * args.scale, :w_old * args.scale, ...] |
|
img_gt = np.squeeze(img_gt) |
|
|
|
psnr = util.calculate_psnr(output, img_gt, crop_border=border) |
|
ssim = util.calculate_ssim(output, img_gt, crop_border=border) |
|
test_results['psnr'].append(psnr) |
|
test_results['ssim'].append(ssim) |
|
if img_gt.ndim == 3: |
|
psnr_y = util.calculate_psnr(output, img_gt, crop_border=border, test_y_channel=True) |
|
ssim_y = util.calculate_ssim(output, img_gt, crop_border=border, test_y_channel=True) |
|
test_results['psnr_y'].append(psnr_y) |
|
test_results['ssim_y'].append(ssim_y) |
|
if args.task in ['jpeg_car']: |
|
psnr_b = util.calculate_psnrb(output, img_gt, crop_border=border, test_y_channel=True) |
|
test_results['psnr_b'].append(psnr_b) |
|
print('Testing {:d} {:20s} - PSNR: {:.2f} dB; SSIM: {:.4f}; ' |
|
'PSNR_Y: {:.2f} dB; SSIM_Y: {:.4f}; ' |
|
'PSNR_B: {:.2f} dB.'. |
|
format(idx, imgname, psnr, ssim, psnr_y, ssim_y, psnr_b)) |
|
else: |
|
print('Testing {:d} {:20s}'.format(idx, imgname)) |
|
|
|
|
|
if img_gt is not None: |
|
ave_psnr = sum(test_results['psnr']) / len(test_results['psnr']) |
|
ave_ssim = sum(test_results['ssim']) / len(test_results['ssim']) |
|
print('\n{} \n-- Average PSNR/SSIM(RGB): {:.2f} dB; {:.4f}'.format(save_dir, ave_psnr, ave_ssim)) |
|
if img_gt.ndim == 3: |
|
ave_psnr_y = sum(test_results['psnr_y']) / len(test_results['psnr_y']) |
|
ave_ssim_y = sum(test_results['ssim_y']) / len(test_results['ssim_y']) |
|
print('-- Average PSNR_Y/SSIM_Y: {:.2f} dB; {:.4f}'.format(ave_psnr_y, ave_ssim_y)) |
|
if args.task in ['jpeg_car']: |
|
ave_psnr_b = sum(test_results['psnr_b']) / len(test_results['psnr_b']) |
|
print('-- Average PSNR_B: {:.2f} dB'.format(ave_psnr_b)) |
|
|
|
|
|
def define_model(args): |
|
|
|
if args.task == 'classical_sr': |
|
model = net(upscale=args.scale, in_chans=3, img_size=args.training_patch_size, window_size=8, |
|
img_range=1., depths=[6, 6, 6, 6, 6, 6], embed_dim=180, num_heads=[6, 6, 6, 6, 6, 6], |
|
mlp_ratio=2, upsampler='pixelshuffle', resi_connection='1conv') |
|
param_key_g = 'params' |
|
|
|
|
|
|
|
elif args.task == 'lightweight_sr': |
|
model = net(upscale=args.scale, in_chans=3, img_size=64, window_size=8, |
|
img_range=1., depths=[6, 6, 6, 6], embed_dim=60, num_heads=[6, 6, 6, 6], |
|
mlp_ratio=2, upsampler='pixelshuffledirect', resi_connection='1conv') |
|
param_key_g = 'params' |
|
|
|
|
|
elif args.task == 'real_sr': |
|
if not args.large_model: |
|
|
|
model = net(upscale=4, in_chans=3, img_size=64, window_size=8, |
|
img_range=1., depths=[6, 6, 6, 6, 6, 6], embed_dim=180, num_heads=[6, 6, 6, 6, 6, 6], |
|
mlp_ratio=2, upsampler='nearest+conv', resi_connection='1conv') |
|
else: |
|
|
|
model = net(upscale=4, in_chans=3, img_size=64, window_size=8, |
|
img_range=1., depths=[6, 6, 6, 6, 6, 6, 6, 6, 6], embed_dim=240, |
|
num_heads=[8, 8, 8, 8, 8, 8, 8, 8, 8], |
|
mlp_ratio=2, upsampler='nearest+conv', resi_connection='3conv') |
|
param_key_g = 'params_ema' |
|
|
|
|
|
elif args.task == 'gray_dn': |
|
model = net(upscale=1, in_chans=1, img_size=128, window_size=8, |
|
img_range=1., depths=[6, 6, 6, 6, 6, 6], embed_dim=180, num_heads=[6, 6, 6, 6, 6, 6], |
|
mlp_ratio=2, upsampler='', resi_connection='1conv') |
|
param_key_g = 'params' |
|
|
|
|
|
elif args.task == 'color_dn': |
|
model = net(upscale=1, in_chans=3, img_size=128, window_size=8, |
|
img_range=1., depths=[6, 6, 6, 6, 6, 6], embed_dim=180, num_heads=[6, 6, 6, 6, 6, 6], |
|
mlp_ratio=2, upsampler='', resi_connection='1conv') |
|
param_key_g = 'params' |
|
|
|
|
|
|
|
elif args.task == 'jpeg_car': |
|
model = net(upscale=1, in_chans=1, img_size=126, window_size=7, |
|
img_range=255., depths=[6, 6, 6, 6, 6, 6], embed_dim=180, num_heads=[6, 6, 6, 6, 6, 6], |
|
mlp_ratio=2, upsampler='', resi_connection='1conv') |
|
param_key_g = 'params' |
|
|
|
pretrained_model = torch.load(args.model_path) |
|
model.load_state_dict(pretrained_model[param_key_g] if param_key_g in pretrained_model.keys() else pretrained_model, strict=True) |
|
|
|
return model |
|
|
|
|
|
def setup(args): |
|
|
|
if args.task in ['classical_sr', 'lightweight_sr']: |
|
save_dir = f'results/swinir_{args.task}_x{args.scale}' |
|
folder = args.folder_gt |
|
border = args.scale |
|
window_size = 8 |
|
|
|
|
|
elif args.task in ['real_sr']: |
|
|
|
save_dir = f'results' |
|
|
|
|
|
folder = args.folder_lq |
|
border = 0 |
|
window_size = 8 |
|
|
|
|
|
elif args.task in ['gray_dn', 'color_dn']: |
|
save_dir = f'results/swinir_{args.task}_noise{args.noise}' |
|
folder = args.folder_gt |
|
border = 0 |
|
window_size = 8 |
|
|
|
|
|
elif args.task in ['jpeg_car']: |
|
save_dir = f'results/swinir_{args.task}_jpeg{args.jpeg}' |
|
folder = args.folder_gt |
|
border = 0 |
|
window_size = 7 |
|
|
|
return folder, save_dir, border, window_size |
|
|
|
|
|
def get_image_pair(args, path): |
|
(imgname, imgext) = os.path.splitext(os.path.basename(path)) |
|
|
|
|
|
if args.task in ['classical_sr', 'lightweight_sr']: |
|
img_gt = cv2.imread(path, cv2.IMREAD_COLOR).astype(np.float32) / 255. |
|
img_lq = cv2.imread(f'{args.folder_lq}/{imgname}x{args.scale}{imgext}', cv2.IMREAD_COLOR).astype( |
|
np.float32) / 255. |
|
|
|
|
|
elif args.task in ['real_sr']: |
|
img_gt = None |
|
img_lq = cv2.imread(path, cv2.IMREAD_COLOR).astype(np.float32) / 255. |
|
|
|
|
|
elif args.task in ['gray_dn']: |
|
img_gt = cv2.imread(path, cv2.IMREAD_GRAYSCALE).astype(np.float32) / 255. |
|
np.random.seed(seed=0) |
|
img_lq = img_gt + np.random.normal(0, args.noise / 255., img_gt.shape) |
|
img_gt = np.expand_dims(img_gt, axis=2) |
|
img_lq = np.expand_dims(img_lq, axis=2) |
|
|
|
|
|
elif args.task in ['color_dn']: |
|
img_gt = cv2.imread(path, cv2.IMREAD_COLOR).astype(np.float32) / 255. |
|
np.random.seed(seed=0) |
|
img_lq = img_gt + np.random.normal(0, args.noise / 255., img_gt.shape) |
|
|
|
|
|
elif args.task in ['jpeg_car']: |
|
img_gt = cv2.imread(path, cv2.IMREAD_UNCHANGED) |
|
if img_gt.ndim != 2: |
|
img_gt = util.bgr2ycbcr(img_gt, y_only=True) |
|
result, encimg = cv2.imencode('.jpg', img_gt, [int(cv2.IMWRITE_JPEG_QUALITY), args.jpeg]) |
|
img_lq = cv2.imdecode(encimg, 0) |
|
img_gt = np.expand_dims(img_gt, axis=2).astype(np.float32) / 255. |
|
img_lq = np.expand_dims(img_lq, axis=2).astype(np.float32) / 255. |
|
|
|
return imgname, img_lq, img_gt |
|
|
|
|
|
def test(img_lq, model, args, window_size): |
|
if args.tile is None: |
|
|
|
output = model(img_lq) |
|
else: |
|
|
|
b, c, h, w = img_lq.size() |
|
tile = min(args.tile, h, w) |
|
assert tile % window_size == 0, "tile size should be a multiple of window_size" |
|
tile_overlap = args.tile_overlap |
|
sf = args.scale |
|
|
|
stride = tile - tile_overlap |
|
h_idx_list = list(range(0, h-tile, stride)) + [h-tile] |
|
w_idx_list = list(range(0, w-tile, stride)) + [w-tile] |
|
E = torch.zeros(b, c, h*sf, w*sf).type_as(img_lq) |
|
W = torch.zeros_like(E) |
|
|
|
for h_idx in h_idx_list: |
|
for w_idx in w_idx_list: |
|
in_patch = img_lq[..., h_idx:h_idx+tile, w_idx:w_idx+tile] |
|
out_patch = model(in_patch) |
|
out_patch_mask = torch.ones_like(out_patch) |
|
|
|
E[..., h_idx*sf:(h_idx+tile)*sf, w_idx*sf:(w_idx+tile)*sf].add_(out_patch) |
|
W[..., h_idx*sf:(h_idx+tile)*sf, w_idx*sf:(w_idx+tile)*sf].add_(out_patch_mask) |
|
output = E.div_(W) |
|
|
|
return output |
|
|
|
if __name__ == '__main__': |
|
main() |
|
|