timelapse / pages /10_🌍_Earth_Engine_Datasets.py
giswqs's picture
Add timelapse app
9ad0e2d
raw
history blame
5.18 kB
import ee
import streamlit as st
import geemap.foliumap as geemap
st.set_page_config(layout="wide")
st.sidebar.title("About")
st.sidebar.info(
"""
Web App URL: <https://geospatial.streamlitapp.com>
GitHub repository: <https://github.com/giswqs/streamlit-geospatial>
"""
)
st.sidebar.title("Contact")
st.sidebar.info(
"""
Qiusheng Wu: <https://wetlands.io>
[GitHub](https://github.com/giswqs) | [Twitter](https://twitter.com/giswqs) | [YouTube](https://www.youtube.com/c/QiushengWu) | [LinkedIn](https://www.linkedin.com/in/qiushengwu)
"""
)
def nlcd():
# st.header("National Land Cover Database (NLCD)")
row1_col1, row1_col2 = st.columns([3, 1])
width = 950
height = 600
Map = geemap.Map(center=[40, -100], zoom=4)
# Select the seven NLCD epoches after 2000.
years = ["2001", "2004", "2006", "2008", "2011", "2013", "2016", "2019"]
# Get an NLCD image by year.
def getNLCD(year):
# Import the NLCD collection.
dataset = ee.ImageCollection("USGS/NLCD_RELEASES/2019_REL/NLCD")
# Filter the collection by year.
nlcd = dataset.filter(ee.Filter.eq("system:index", year)).first()
# Select the land cover band.
landcover = nlcd.select("landcover")
return landcover
with row1_col2:
selected_year = st.multiselect("Select a year", years)
add_legend = st.checkbox("Show legend")
if selected_year:
for year in selected_year:
Map.addLayer(getNLCD(year), {}, "NLCD " + year)
if add_legend:
Map.add_legend(
legend_title="NLCD Land Cover Classification", builtin_legend="NLCD"
)
with row1_col1:
Map.to_streamlit(width=width, height=height)
else:
with row1_col1:
Map.to_streamlit(width=width, height=height)
def search_data():
# st.header("Search Earth Engine Data Catalog")
Map = geemap.Map()
if "ee_assets" not in st.session_state:
st.session_state["ee_assets"] = None
if "asset_titles" not in st.session_state:
st.session_state["asset_titles"] = None
col1, col2 = st.columns([2, 1])
dataset = None
with col2:
keyword = st.text_input(
"Enter a keyword to search (e.g., elevation)", "")
if keyword:
ee_assets = geemap.search_ee_data(keyword)
asset_titles = [x["title"] for x in ee_assets]
asset_types = [x["type"] for x in ee_assets]
translate = {
"image_collection": "ee.ImageCollection('",
"image": "ee.Image('",
"table": "ee.FeatureCollection('",
"table_collection": "ee.FeatureCollection('",
}
dataset = st.selectbox("Select a dataset", asset_titles)
if len(ee_assets) > 0:
st.session_state["ee_assets"] = ee_assets
st.session_state["asset_titles"] = asset_titles
if dataset is not None:
with st.expander("Show dataset details", True):
index = asset_titles.index(dataset)
html = geemap.ee_data_html(
st.session_state["ee_assets"][index])
html = html.replace("\n", "")
st.markdown(html, True)
ee_id = ee_assets[index]["id"]
uid = ee_assets[index]["uid"]
st.markdown(f"""**Earth Engine Snippet:** `{ee_id}`""")
ee_asset = f"{translate[asset_types[index]]}{ee_id}')"
vis_params = st.text_input(
"Enter visualization parameters as a dictionary", {}
)
layer_name = st.text_input("Enter a layer name", uid)
button = st.button("Add dataset to map")
if button:
vis = {}
try:
if vis_params.strip() == "":
# st.error("Please enter visualization parameters")
vis_params = "{}"
vis = eval(vis_params)
if not isinstance(vis, dict):
st.error(
"Visualization parameters must be a dictionary")
try:
Map.addLayer(eval(ee_asset), vis, layer_name)
except Exception as e:
st.error(f"Error adding layer: {e}")
except Exception as e:
st.error(f"Invalid visualization parameters: {e}")
with col1:
Map.to_streamlit()
else:
with col1:
Map.to_streamlit()
def app():
st.title("Earth Engine Data Catalog")
apps = ["Search Earth Engine Data Catalog",
"National Land Cover Database (NLCD)"]
selected_app = st.selectbox("Select an app", apps)
if selected_app == "National Land Cover Database (NLCD)":
nlcd()
elif selected_app == "Search Earth Engine Data Catalog":
search_data()
app()