giswqs commited on
Commit
d5c9531
Β·
1 Parent(s): 5a4c3ca

Fix bugs and remove unused apps

Browse files
apps/basemaps.py DELETED
@@ -1,44 +0,0 @@
1
- import streamlit as st
2
- import leafmap.foliumap as leafmap
3
-
4
-
5
- def app():
6
- st.title("Searching Basemaps")
7
- st.markdown(
8
- """
9
- This app is a demonstration of searching and loading basemaps from [xyzservices](https://github.com/geopandas/xyzservices) and [Quick Map Services (QMS)](https://github.com/nextgis/quickmapservices). Selecting from 1000+ basemaps with a few clicks.
10
- """
11
- )
12
-
13
- with st.expander("See demo"):
14
- st.image("https://i.imgur.com/0SkUhZh.gif")
15
-
16
- row1_col1, row1_col2 = st.columns([3, 1])
17
- width = 800
18
- height = 600
19
- tiles = None
20
-
21
- with row1_col2:
22
-
23
- checkbox = st.checkbox("Search Quick Map Services (QMS)")
24
- keyword = st.text_input("Enter a keyword to search and press Enter:")
25
- empty = st.empty()
26
-
27
- if keyword:
28
- options = leafmap.search_xyz_services(keyword=keyword)
29
- if checkbox:
30
- qms = leafmap.search_qms(keyword=keyword)
31
- if qms is not None:
32
- options = options + qms
33
-
34
- tiles = empty.multiselect(
35
- "Select XYZ tiles to add to the map:", options)
36
-
37
- with row1_col1:
38
- m = leafmap.Map()
39
-
40
- if tiles is not None:
41
- for tile in tiles:
42
- m.add_xyz_service(tile)
43
-
44
- m.to_streamlit(width, height)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
apps/census.py DELETED
@@ -1,35 +0,0 @@
1
- import streamlit as st
2
- import leafmap.foliumap as leafmap
3
-
4
-
5
- def app():
6
- st.title("Using U.S. Census Data")
7
- st.markdown(
8
- """
9
- This app is a demonstration of using the [U.S. Census Bureau](https://www.census.gov/) TIGERweb Web Map Service (WMS). A complete list of WMS layers can be found [here](https://tigerweb.geo.census.gov/tigerwebmain/TIGERweb_wms.html).
10
- """
11
- )
12
-
13
- if "first_index" not in st.session_state:
14
- st.session_state["first_index"] = 60
15
- else:
16
- st.session_state["first_index"] = 0
17
-
18
- row1_col1, row1_col2 = st.columns([3, 1])
19
- width = 800
20
- height = 600
21
-
22
- census_dict = leafmap.get_census_dict()
23
- with row1_col2:
24
-
25
- wms = st.selectbox("Select a WMS", list(census_dict.keys()), index=11)
26
- layer = st.selectbox(
27
- "Select a layer",
28
- census_dict[wms]["layers"],
29
- index=st.session_state["first_index"],
30
- )
31
-
32
- with row1_col1:
33
- m = leafmap.Map()
34
- m.add_census_data(wms, layer)
35
- m.to_streamlit(width, height)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
apps/cesium.py DELETED
@@ -1,8 +0,0 @@
1
- import leafmap
2
- import streamlit as st
3
-
4
-
5
- def app():
6
- st.title("Cesium 3D Map")
7
- html = "data/html/sfo_buildings.html"
8
- leafmap.cesium_to_streamlit(html, height=800)
 
 
 
 
 
 
 
 
 
apps/deck.py DELETED
@@ -1,178 +0,0 @@
1
- import os
2
- import streamlit as st
3
- import pydeck as pdk
4
- import pandas as pd
5
-
6
-
7
- def globe_view():
8
-
9
- """
10
- GlobeView
11
- =========
12
-
13
- Over 33,000 power plants of the world plotted by their production capacity (given by height)
14
- and fuel type (green if renewable) on an experimental deck.gl GlobeView.
15
- """
16
-
17
- COUNTRIES = "https://d2ad6b4ur7yvpq.cloudfront.net/naturalearth-3.3.0/ne_50m_admin_0_scale_rank.geojson"
18
- POWER_PLANTS = "https://raw.githubusercontent.com/ajduberstein/geo_datasets/master/global_power_plant_database.csv"
19
-
20
- df = pd.read_csv(POWER_PLANTS)
21
-
22
- def is_green(fuel_type):
23
- """Return a green RGB value if a facility uses a renewable fuel type"""
24
- if fuel_type.lower() in (
25
- "nuclear",
26
- "water",
27
- "wind",
28
- "hydro",
29
- "biomass",
30
- "solar",
31
- "geothermal",
32
- ):
33
- return [10, 230, 120]
34
- return [230, 158, 10]
35
-
36
- df["color"] = df["primary_fuel"].apply(is_green)
37
-
38
- view_state = pdk.ViewState(latitude=51.47, longitude=0.45, zoom=2, min_zoom=2)
39
-
40
- # Set height and width variables
41
- view = pdk.View(type="_GlobeView", controller=True, width=1000, height=700)
42
-
43
- layers = [
44
- pdk.Layer(
45
- "GeoJsonLayer",
46
- id="base-map",
47
- data=COUNTRIES,
48
- stroked=False,
49
- filled=True,
50
- get_fill_color=[200, 200, 200],
51
- ),
52
- pdk.Layer(
53
- "ColumnLayer",
54
- id="power-plant",
55
- data=df,
56
- get_elevation="capacity_mw",
57
- get_position=["longitude", "latitude"],
58
- elevation_scale=100,
59
- pickable=True,
60
- auto_highlight=True,
61
- radius=20000,
62
- get_fill_color="color",
63
- ),
64
- ]
65
-
66
- r = pdk.Deck(
67
- views=[view],
68
- initial_view_state=view_state,
69
- tooltip={"text": "{name}, {primary_fuel} plant, {country}"},
70
- layers=layers,
71
- # Note that this must be set for the globe to be opaque
72
- parameters={"cull": True},
73
- )
74
-
75
- return r
76
-
77
-
78
- def geojson_layer():
79
-
80
- """
81
- GeoJsonLayer
82
- ===========
83
-
84
- Property values in Vancouver, Canada, adapted from the deck.gl example pages. Input data is in a GeoJSON format.
85
- """
86
-
87
- DATA_URL = "https://raw.githubusercontent.com/visgl/deck.gl-data/master/examples/geojson/vancouver-blocks.json"
88
- LAND_COVER = [
89
- [[-123.0, 49.196], [-123.0, 49.324], [-123.306, 49.324], [-123.306, 49.196]]
90
- ]
91
-
92
- INITIAL_VIEW_STATE = pdk.ViewState(
93
- latitude=49.254, longitude=-123.13, zoom=11, max_zoom=16, pitch=45, bearing=0
94
- )
95
-
96
- polygon = pdk.Layer(
97
- "PolygonLayer",
98
- LAND_COVER,
99
- stroked=False,
100
- # processes the data as a flat longitude-latitude pair
101
- get_polygon="-",
102
- get_fill_color=[0, 0, 0, 20],
103
- )
104
-
105
- geojson = pdk.Layer(
106
- "GeoJsonLayer",
107
- DATA_URL,
108
- opacity=0.8,
109
- stroked=False,
110
- filled=True,
111
- extruded=True,
112
- wireframe=True,
113
- get_elevation="properties.valuePerSqm / 20",
114
- get_fill_color="[255, 255, properties.growth * 255]",
115
- get_line_color=[255, 255, 255],
116
- )
117
-
118
- r = pdk.Deck(layers=[polygon, geojson], initial_view_state=INITIAL_VIEW_STATE)
119
- return r
120
-
121
-
122
- def terrain():
123
-
124
- """
125
- TerrainLayer
126
- ===========
127
-
128
- Extruded terrain using AWS Open Data Terrain Tiles and Mapbox Satellite imagery
129
- """
130
-
131
- # Import Mapbox API Key from environment
132
- MAPBOX_API_KEY = os.environ["MAPBOX_API_KEY"]
133
-
134
- # AWS Open Data Terrain Tiles
135
- TERRAIN_IMAGE = (
136
- "https://s3.amazonaws.com/elevation-tiles-prod/terrarium/{z}/{x}/{y}.png"
137
- )
138
-
139
- # Define how to parse elevation tiles
140
- ELEVATION_DECODER = {
141
- "rScaler": 256,
142
- "gScaler": 1,
143
- "bScaler": 1 / 256,
144
- "offset": -32768,
145
- }
146
-
147
- SURFACE_IMAGE = f"https://api.mapbox.com/v4/mapbox.satellite/{{z}}/{{x}}/{{y}}@2x.png?access_token={MAPBOX_API_KEY}"
148
-
149
- terrain_layer = pdk.Layer(
150
- "TerrainLayer",
151
- elevation_decoder=ELEVATION_DECODER,
152
- texture=SURFACE_IMAGE,
153
- elevation_data=TERRAIN_IMAGE,
154
- )
155
-
156
- view_state = pdk.ViewState(
157
- latitude=46.24, longitude=-122.18, zoom=11.5, bearing=140, pitch=60
158
- )
159
-
160
- r = pdk.Deck(terrain_layer, initial_view_state=view_state)
161
- return r
162
-
163
-
164
- def app():
165
-
166
- st.title("Pydeck Gallery")
167
-
168
- options = ["GeoJsonLayer", "GlobeView", "TerrainLayer"]
169
-
170
- option = st.selectbox("Select a pydeck layer type", options)
171
-
172
- if option == "GeoJsonLayer":
173
- st.header("Property values in Vancouver, Canada")
174
- st.pydeck_chart(geojson_layer())
175
- # elif option == "GlobeView":
176
- # st.pydeck_chart(globe_view())
177
- elif option == "TerrainLayer":
178
- st.pydeck_chart(terrain())
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
apps/device_loc.py DELETED
@@ -1,43 +0,0 @@
1
- import streamlit as st
2
- from bokeh.models.widgets import Button
3
- from bokeh.models import CustomJS
4
- from streamlit_bokeh_events import streamlit_bokeh_events
5
- import leafmap.foliumap as leafmap
6
-
7
-
8
- def app():
9
-
10
- loc_button = Button(label="Get Device Location", max_width=150)
11
- loc_button.js_on_event(
12
- "button_click",
13
- CustomJS(
14
- code="""
15
- navigator.geolocation.getCurrentPosition(
16
- (loc) => {
17
- document.dispatchEvent(new CustomEvent("GET_LOCATION", {detail: {lat: loc.coords.latitude, lon: loc.coords.longitude}}))
18
- }
19
- )
20
- """
21
- ),
22
- )
23
- result = streamlit_bokeh_events(
24
- loc_button,
25
- events="GET_LOCATION",
26
- key="get_location",
27
- refresh_on_update=False,
28
- override_height=75,
29
- debounce_time=0,
30
- )
31
-
32
- if result:
33
- if "GET_LOCATION" in result:
34
- loc = result.get("GET_LOCATION")
35
- lat = loc.get("lat")
36
- lon = loc.get("lon")
37
- st.write(f"Lat, Lon: {lat}, {lon}")
38
-
39
- m = leafmap.Map(center=(lat, lon), zoom=16)
40
- m.add_basemap("ROADMAP")
41
- popup = f"lat, lon: {lat}, {lon}"
42
- m.add_marker(location=(lat, lon), popup=popup)
43
- m.to_streamlit()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
apps/gee.py DELETED
@@ -1,123 +0,0 @@
1
- import ee
2
- import streamlit as st
3
- import geemap.foliumap as geemap
4
-
5
-
6
- def nlcd():
7
-
8
- st.header("National Land Cover Database (NLCD)")
9
-
10
- row1_col1, row1_col2 = st.columns([3, 1])
11
- width = 950
12
- height = 600
13
-
14
- Map = geemap.Map()
15
-
16
- # Select the seven NLCD epoches after 2000.
17
- years = ["2001", "2004", "2006", "2008", "2011", "2013", "2016"]
18
-
19
- # Get an NLCD image by year.
20
- def getNLCD(year):
21
- # Import the NLCD collection.
22
- dataset = ee.ImageCollection("USGS/NLCD_RELEASES/2016_REL")
23
-
24
- # Filter the collection by year.
25
- nlcd = dataset.filter(ee.Filter.eq("system:index", year)).first()
26
-
27
- # Select the land cover band.
28
- landcover = nlcd.select("landcover")
29
- return landcover
30
-
31
- with row1_col2:
32
- selected_year = st.multiselect("Select a year", years)
33
- add_legend = st.checkbox("Show legend")
34
-
35
- if selected_year:
36
- for year in selected_year:
37
- Map.addLayer(getNLCD(year), {}, "NLCD " + year)
38
-
39
- if add_legend:
40
- Map.add_legend(
41
- legend_title="NLCD Land Cover Classification", builtin_legend="NLCD"
42
- )
43
- with row1_col1:
44
- Map.to_streamlit(width=width, height=height)
45
-
46
- else:
47
- with row1_col1:
48
- Map.to_streamlit(width=width, height=height)
49
-
50
-
51
- def search_data():
52
-
53
- st.header("Search Earth Engine Data Catalog")
54
-
55
- Map = geemap.Map()
56
-
57
- if "ee_assets" not in st.session_state:
58
- st.session_state["ee_assets"] = None
59
- if "asset_titles" not in st.session_state:
60
- st.session_state["asset_titles"] = None
61
-
62
- col1, col2 = st.columns([2, 1])
63
-
64
- dataset = None
65
- with col2:
66
- keyword = st.text_input("Enter a keyword to search (e.g., elevation)", "")
67
- if keyword:
68
- ee_assets = geemap.search_ee_data(keyword)
69
- asset_titles = [x["title"] for x in ee_assets]
70
- dataset = st.selectbox("Select a dataset", asset_titles)
71
- if len(ee_assets) > 0:
72
- st.session_state["ee_assets"] = ee_assets
73
- st.session_state["asset_titles"] = asset_titles
74
-
75
- if dataset is not None:
76
- with st.expander("Show dataset details", True):
77
- index = asset_titles.index(dataset)
78
- html = geemap.ee_data_html(st.session_state["ee_assets"][index])
79
- st.markdown(html, True)
80
-
81
- ee_id = ee_assets[index]["ee_id_snippet"]
82
- uid = ee_assets[index]["uid"]
83
- st.markdown(f"""**Earth Engine Snippet:** `{ee_id}`""")
84
-
85
- vis_params = st.text_input(
86
- "Enter visualization parameters as a dictionary", {}
87
- )
88
- layer_name = st.text_input("Enter a layer name", uid)
89
- button = st.button("Add dataset to map")
90
- if button:
91
- vis = {}
92
- try:
93
- if vis_params.strip() == "":
94
- # st.error("Please enter visualization parameters")
95
- vis_params = "{}"
96
- vis = eval(vis_params)
97
- if not isinstance(vis, dict):
98
- st.error("Visualization parameters must be a dictionary")
99
- try:
100
- Map.addLayer(eval(ee_id), vis, layer_name)
101
- except Exception as e:
102
- st.error(f"Error adding layer: {e}")
103
- except Exception as e:
104
- st.error(f"Invalid visualization parameters: {e}")
105
-
106
- with col1:
107
- Map.to_streamlit()
108
- else:
109
- with col1:
110
- Map.to_streamlit()
111
-
112
-
113
- def app():
114
- st.title("Google Earth Engine Applications")
115
-
116
- apps = ["National Land Cover Database (NLCD)", "Search Earth Engine Data Catalog"]
117
-
118
- selected_app = st.selectbox("Select an app", apps)
119
-
120
- if selected_app == "National Land Cover Database (NLCD)":
121
- nlcd()
122
- elif selected_app == "Search Earth Engine Data Catalog":
123
- search_data()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
apps/gee_datasets.py DELETED
@@ -1,186 +0,0 @@
1
- import ee
2
- import streamlit as st
3
- import geemap.foliumap as geemap
4
-
5
- WIDTH = 1060
6
- HEIGHT = 600
7
-
8
-
9
- def function():
10
- st.write("Not implemented yet.")
11
- Map = geemap.Map()
12
- Map.to_streamlit(WIDTH, HEIGHT)
13
-
14
-
15
- def lulc_mrb_floodplain():
16
-
17
- Map = geemap.Map()
18
-
19
- State_boundaries = ee.FeatureCollection('users/giswqs/MRB/State_Boundaries')
20
- State_style = State_boundaries.style(
21
- **{'color': '808080', 'width': 1, 'fillColor': '00000000'}
22
- )
23
-
24
- MRB_boundary = ee.FeatureCollection('users/giswqs/MRB/MRB_Boundary')
25
- MRB_style = MRB_boundary.style(
26
- **{'color': '000000', 'width': 2, 'fillColor': '00000000'}
27
- )
28
-
29
- floodplain = ee.Image('users/giswqs/MRB/USGS_Floodplain')
30
-
31
- class_values = [34, 38, 46, 50, 62]
32
- class_palette = ['c500ff', '00ffc5', '00a9e6', '73004d', '004d73']
33
-
34
- img_1950 = ee.Image('users/giswqs/MRB/Major_Transitions_1941_1950')
35
- img_1950 = img_1950.set('b1_class_values', class_values)
36
- img_1950 = img_1950.set('b1_class_palette', class_palette)
37
-
38
- img_1960 = ee.Image('users/giswqs/MRB/Major_Transitions_1941_1960')
39
- img_1960 = img_1960.set('b1_class_values', class_values)
40
- img_1960 = img_1960.set('b1_class_palette', class_palette)
41
-
42
- img_1970 = ee.Image('users/giswqs/MRB/Major_Transitions_1941_1970')
43
- img_1970 = img_1970.set('b1_class_values', class_values)
44
- img_1970 = img_1970.set('b1_class_palette', class_palette)
45
-
46
- img_1980 = ee.Image('users/giswqs/MRB/Major_Transitions_1941_1980')
47
- img_1980 = img_1980.set('b1_class_values', class_values)
48
- img_1980 = img_1980.set('b1_class_palette', class_palette)
49
-
50
- img_1990 = ee.Image('users/giswqs/MRB/Major_Transitions_1941_1990')
51
- img_1990 = img_1990.set('b1_class_values', class_values)
52
- img_1990 = img_1990.set('b1_class_palette', class_palette)
53
-
54
- img_2000 = ee.Image('users/giswqs/MRB/Major_Transitions_1941_2000')
55
- img_2000 = img_2000.set('b1_class_values', class_values)
56
- img_2000 = img_2000.set('b1_class_palette', class_palette)
57
-
58
- Map.addLayer(floodplain, {'palette': ['cccccc']}, 'Floodplain', True, 0.5)
59
- Map.addLayer(img_2000, {}, 'Major Transitions 1941-2000')
60
- Map.addLayer(img_1990, {}, 'Major Transitions 1941-1990')
61
- Map.addLayer(img_1980, {}, 'Major Transitions 1941-1980')
62
- Map.addLayer(img_1970, {}, 'Major Transitions 1941-1970')
63
- Map.addLayer(img_1960, {}, 'Major Transitions 1941-1960')
64
- Map.addLayer(img_1950, {}, 'Major Transitions 1941-1950')
65
-
66
- Map.addLayer(State_style, {}, 'State Boundaries')
67
- Map.addLayer(MRB_style, {}, 'MRB Boundary')
68
-
69
- Map.to_streamlit(WIDTH, HEIGHT)
70
-
71
-
72
- def global_mangrove_watch():
73
- """https://samapriya.github.io/awesome-gee-community-datasets/projects/mangrove/"""
74
- Map = geemap.Map()
75
- gmw2007 = ee.FeatureCollection("projects/sat-io/open-datasets/GMW/GMW_2007_v2")
76
- gmw2008 = ee.FeatureCollection("projects/sat-io/open-datasets/GMW/GMW_2008_v2")
77
- gmw2009 = ee.FeatureCollection("projects/sat-io/open-datasets/GMW/GMW_2009_v2")
78
- gmw2010 = ee.FeatureCollection("projects/sat-io/open-datasets/GMW/GMW_2010_v2")
79
- gmw2015 = ee.FeatureCollection("projects/sat-io/open-datasets/GMW/GMW_2015_v2")
80
- gmw2016 = ee.FeatureCollection("projects/sat-io/open-datasets/GMW/GMW_2016_v2")
81
- gmw1996 = ee.FeatureCollection("projects/sat-io/open-datasets/GMW/GMW_1996_v2")
82
-
83
- Map.addLayer(
84
- ee.Image().paint(gmw1996, 0, 3),
85
- {"palette": ["228B22"]},
86
- 'Global Mangrove Watch 1996',
87
- )
88
- Map.addLayer(
89
- ee.Image().paint(gmw2007, 0, 3),
90
- {"palette": ["228B22"]},
91
- 'Global Mangrove Watch 2007',
92
- )
93
- Map.addLayer(
94
- ee.Image().paint(gmw2008, 0, 3),
95
- {"palette": ["228B22"]},
96
- 'Global Mangrove Watch 2008',
97
- )
98
- Map.addLayer(
99
- ee.Image().paint(gmw2009, 0, 3),
100
- {"palette": ["228B22"]},
101
- 'Global Mangrove Watch 2009',
102
- )
103
- Map.addLayer(
104
- ee.Image().paint(gmw2010, 0, 3),
105
- {"palette": ["228B22"]},
106
- 'Global Mangrove Watch 2010',
107
- )
108
- Map.addLayer(
109
- ee.Image().paint(gmw2015, 0, 3),
110
- {"palette": ["228B22"]},
111
- 'Global Mangrove Watch 2015',
112
- )
113
- Map.addLayer(
114
- ee.Image().paint(gmw2016, 0, 3),
115
- {"palette": ["228B22"]},
116
- 'Global Mangrove Watch 2015',
117
- )
118
-
119
- Map.to_streamlit(WIDTH, HEIGHT)
120
-
121
-
122
- def app():
123
-
124
- st.title("Awesome GEE Community Datasets")
125
-
126
- st.markdown(
127
- """
128
-
129
- This app is for exploring the [Awesome GEE Community Datasets](https://samapriya.github.io/awesome-gee-community-datasets). Work in progress.
130
-
131
- """
132
- )
133
-
134
- datasets = {
135
- "Population & Socioeconomic": {
136
- "High Resolution Settlement Layer": "function()",
137
- "World Settlement Footprint (2015)": "function()",
138
- "Gridded Population of the World": "function()",
139
- "geoBoundaries Global Database": "function()",
140
- "West Africa Coastal Vulnerability Mapping": "function()",
141
- "Relative Wealth Index (RWI)": "function()",
142
- "Social Connectedness Index (SCI)": "function()",
143
- "Native Land (Indigenous Land Maps)": "function()",
144
- },
145
- "Geophysical, Biological & Biogeochemical": {
146
- "Geomorpho90m Geomorphometric Layers": "function()",
147
- },
148
- "Land Use and Land Cover": {
149
- "Global Mangrove Watch": "global_mangrove_watch()",
150
- "Mississippi River Basin Floodplain Land Use Change (1941-2000)": "lulc_mrb_floodplain()",
151
- },
152
- "Hydrology": {
153
- "Global Shoreline Dataset": "function()",
154
- },
155
- "Agriculture, Vegetation and Forestry": {
156
- "Landfire Mosaics LF v2.0.0": "function()",
157
- },
158
- "Global Utilities, Assets and Amenities Layers": {
159
- "Global Power": "function()",
160
- },
161
- "EarthEnv Biodiversity ecosystems & climate Layers": {
162
- "Global Consensus Landcover": "function()",
163
- },
164
- "Weather and Climate Layers": {
165
- "Global Reference Evapotranspiration Layers": "function()",
166
- },
167
- "Global Events Layers": {
168
- "Global Fire Atlas (2003-2016)": "function()",
169
- },
170
- }
171
-
172
- row1_col1, row1_col2, _ = st.columns([1.2, 1.8, 1])
173
-
174
- with row1_col1:
175
- category = st.selectbox("Select a category", datasets.keys(), index=2)
176
- with row1_col2:
177
- dataset = st.selectbox("Select a dataset", datasets[category].keys())
178
-
179
- Map = geemap.Map()
180
-
181
- if dataset:
182
- eval(datasets[category][dataset])
183
-
184
- else:
185
- Map = geemap.Map()
186
- Map.to_streamlit(WIDTH, HEIGHT)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
apps/heatmap.py DELETED
@@ -1,19 +0,0 @@
1
- import streamlit as st
2
- import leafmap.foliumap as leafmap
3
-
4
-
5
- def app():
6
-
7
- st.title('Heatmaps')
8
-
9
- filepath = "https://raw.githubusercontent.com/giswqs/leafmap/master/examples/data/us_cities.csv"
10
- m = leafmap.Map(tiles="stamentoner")
11
- m.add_heatmap(
12
- filepath,
13
- latitude="latitude",
14
- longitude="longitude",
15
- value="pop_max",
16
- name="Heat map",
17
- radius=20,
18
- )
19
- m.to_streamlit(width=700, height=500)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
apps/home.py DELETED
@@ -1,34 +0,0 @@
1
- import streamlit as st
2
- import leafmap.foliumap as leafmap
3
-
4
-
5
- def app():
6
- st.title("Streamlit for Geospatial Applications")
7
-
8
- st.markdown(
9
- """
10
- This multi-page web app demonstrates various interactive web apps created using [streamlit](https://streamlit.io) and open-source mapping libraries,
11
- such as [leafmap](https://leafmap.org), [geemap](https://geemap.org), [pydeck](https://deckgl.readthedocs.io), and [kepler.gl](https://docs.kepler.gl/docs/keplergl-jupyter).
12
- This is an open-source project and you are very welcome to contribute your comments, questions, resources, and apps as [issues](https://github.com/giswqs/streamlit-geospatial/issues) or
13
- [pull requests](https://github.com/giswqs/streamlit-geospatial/pulls) to the [GitHub repository](https://github.com/giswqs/streamlit-geospatial).
14
-
15
- """
16
- )
17
-
18
- st.info("Click on the left sidebar menu to navigate to the different apps.")
19
-
20
- st.subheader("Timelapse of Satellite Imagery")
21
- st.markdown(
22
- """
23
- The following timelapse animations were created using the Timelapse web app. Click `Create Timelapse` on the left sidebar menu to create your own timelapse for any location around the globe.
24
- """
25
- )
26
-
27
- row1_col1, row1_col2 = st.columns(2)
28
- with row1_col1:
29
- st.image("https://github.com/giswqs/data/raw/main/timelapse/spain.gif")
30
- st.image("https://github.com/giswqs/data/raw/main/timelapse/las_vegas.gif")
31
-
32
- with row1_col2:
33
- st.image("https://github.com/giswqs/data/raw/main/timelapse/goes.gif")
34
- st.image("https://github.com/giswqs/data/raw/main/timelapse/fire.gif")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
apps/housing.py DELETED
@@ -1,457 +0,0 @@
1
- import datetime
2
- import os
3
- import pathlib
4
- import requests
5
- import zipfile
6
- import pandas as pd
7
- import pydeck as pdk
8
- import geopandas as gpd
9
- import streamlit as st
10
- import leafmap.colormaps as cm
11
- from leafmap.common import hex_to_rgb
12
-
13
-
14
- STREAMLIT_STATIC_PATH = pathlib.Path(st.__path__[0]) / "static"
15
- # We create a downloads directory within the streamlit static asset directory
16
- # and we write output files to it
17
- DOWNLOADS_PATH = STREAMLIT_STATIC_PATH / "downloads"
18
- if not DOWNLOADS_PATH.is_dir():
19
- DOWNLOADS_PATH.mkdir()
20
-
21
- # Data source: https://www.realtor.com/research/data/
22
- # link_prefix = "https://econdata.s3-us-west-2.amazonaws.com/Reports/"
23
- link_prefix = "https://raw.githubusercontent.com/giswqs/data/main/housing/"
24
-
25
- data_links = {
26
- "weekly": {
27
- "national": link_prefix + "Core/listing_weekly_core_aggregate_by_country.csv",
28
- "metro": link_prefix + "Core/listing_weekly_core_aggregate_by_metro.csv",
29
- },
30
- "monthly_current": {
31
- "national": link_prefix + "Core/RDC_Inventory_Core_Metrics_Country.csv",
32
- "state": link_prefix + "Core/RDC_Inventory_Core_Metrics_State.csv",
33
- "metro": link_prefix + "Core/RDC_Inventory_Core_Metrics_Metro.csv",
34
- "county": link_prefix + "Core/RDC_Inventory_Core_Metrics_County.csv",
35
- "zip": link_prefix + "Core/RDC_Inventory_Core_Metrics_Zip.csv",
36
- },
37
- "monthly_historical": {
38
- "national": link_prefix + "Core/RDC_Inventory_Core_Metrics_Country_History.csv",
39
- "state": link_prefix + "Core/RDC_Inventory_Core_Metrics_State_History.csv",
40
- "metro": link_prefix + "Core/RDC_Inventory_Core_Metrics_Metro_History.csv",
41
- "county": link_prefix + "Core/RDC_Inventory_Core_Metrics_County_History.csv",
42
- "zip": link_prefix + "Core/RDC_Inventory_Core_Metrics_Zip_History.csv",
43
- },
44
- "hotness": {
45
- "metro": link_prefix
46
- + "Hotness/RDC_Inventory_Hotness_Metrics_Metro_History.csv",
47
- "county": link_prefix
48
- + "Hotness/RDC_Inventory_Hotness_Metrics_County_History.csv",
49
- "zip": link_prefix + "Hotness/RDC_Inventory_Hotness_Metrics_Zip_History.csv",
50
- },
51
- }
52
-
53
-
54
- def get_data_columns(df, category, frequency="monthly"):
55
- if frequency == "monthly":
56
- if category.lower() == "county":
57
- del_cols = ["month_date_yyyymm", "county_fips", "county_name"]
58
- elif category.lower() == "state":
59
- del_cols = ["month_date_yyyymm", "state", "state_id"]
60
- elif category.lower() == "national":
61
- del_cols = ["month_date_yyyymm", "country"]
62
- elif category.lower() == "metro":
63
- del_cols = ["month_date_yyyymm", "cbsa_code", "cbsa_title", "HouseholdRank"]
64
- elif category.lower() == "zip":
65
- del_cols = ["month_date_yyyymm", "postal_code", "zip_name", "flag"]
66
- elif frequency == "weekly":
67
- if category.lower() == "national":
68
- del_cols = ["week_end_date", "geo_country"]
69
- elif category.lower() == "metro":
70
- del_cols = ["week_end_date", "cbsa_code", "cbsa_title", "hh_rank"]
71
-
72
- cols = df.columns.values.tolist()
73
-
74
- for col in cols:
75
- if col.strip() in del_cols:
76
- cols.remove(col)
77
- if category.lower() == "metro":
78
- return cols[2:]
79
- else:
80
- return cols[1:]
81
-
82
-
83
- @st.cache(allow_output_mutation=True)
84
- def get_inventory_data(url):
85
- df = pd.read_csv(url)
86
- url = url.lower()
87
- if "county" in url:
88
- df["county_fips"] = df["county_fips"].map(str)
89
- df["county_fips"] = df["county_fips"].str.zfill(5)
90
- elif "state" in url:
91
- df["STUSPS"] = df["state_id"].str.upper()
92
- elif "metro" in url:
93
- df["cbsa_code"] = df["cbsa_code"].map(str)
94
- elif "zip" in url:
95
- df["postal_code"] = df["postal_code"].map(str)
96
- df["postal_code"] = df["postal_code"].str.zfill(5)
97
-
98
- if "listing_weekly_core_aggregate_by_country" in url:
99
- columns = get_data_columns(df, "national", "weekly")
100
- for column in columns:
101
- if column != "median_days_on_market_by_day_yy":
102
- df[column] = df[column].str.rstrip("%").astype(float) / 100
103
- if "listing_weekly_core_aggregate_by_metro" in url:
104
- columns = get_data_columns(df, "metro", "weekly")
105
- for column in columns:
106
- if column != "median_days_on_market_by_day_yy":
107
- df[column] = df[column].str.rstrip("%").astype(float) / 100
108
- df["cbsa_code"] = df["cbsa_code"].str[:5]
109
- return df
110
-
111
-
112
- def filter_weekly_inventory(df, week):
113
- df = df[df["week_end_date"] == week]
114
- return df
115
-
116
-
117
- def get_start_end_year(df):
118
- start_year = int(str(df["month_date_yyyymm"].min())[:4])
119
- end_year = int(str(df["month_date_yyyymm"].max())[:4])
120
- return start_year, end_year
121
-
122
-
123
- def get_periods(df):
124
- return [str(d) for d in list(set(df["month_date_yyyymm"].tolist()))]
125
-
126
-
127
- @st.cache(allow_output_mutation=True)
128
- def get_geom_data(category):
129
-
130
- prefix = (
131
- "https://raw.githubusercontent.com/giswqs/streamlit-geospatial/master/data/"
132
- )
133
- links = {
134
- "national": prefix + "us_nation.geojson",
135
- "state": prefix + "us_states.geojson",
136
- "county": prefix + "us_counties.geojson",
137
- "metro": prefix + "us_metro_areas.geojson",
138
- "zip": "https://www2.census.gov/geo/tiger/GENZ2018/shp/cb_2018_us_zcta510_500k.zip",
139
- }
140
-
141
- if category.lower() == "zip":
142
- r = requests.get(links[category])
143
- out_zip = os.path.join(DOWNLOADS_PATH, "cb_2018_us_zcta510_500k.zip")
144
- with open(out_zip, "wb") as code:
145
- code.write(r.content)
146
- zip_ref = zipfile.ZipFile(out_zip, "r")
147
- zip_ref.extractall(DOWNLOADS_PATH)
148
- gdf = gpd.read_file(out_zip.replace("zip", "shp"))
149
- else:
150
- gdf = gpd.read_file(links[category])
151
- return gdf
152
-
153
-
154
- def join_attributes(gdf, df, category):
155
-
156
- new_gdf = None
157
- if category == "county":
158
- new_gdf = gdf.merge(df, left_on="GEOID", right_on="county_fips", how="outer")
159
- elif category == "state":
160
- new_gdf = gdf.merge(df, left_on="STUSPS", right_on="STUSPS", how="outer")
161
- elif category == "national":
162
- if "geo_country" in df.columns.values.tolist():
163
- df["country"] = None
164
- df.loc[0, "country"] = "United States"
165
- new_gdf = gdf.merge(df, left_on="NAME", right_on="country", how="outer")
166
- elif category == "metro":
167
- new_gdf = gdf.merge(df, left_on="CBSAFP", right_on="cbsa_code", how="outer")
168
- elif category == "zip":
169
- new_gdf = gdf.merge(df, left_on="GEOID10", right_on="postal_code", how="outer")
170
- return new_gdf
171
-
172
-
173
- def select_non_null(gdf, col_name):
174
- new_gdf = gdf[~gdf[col_name].isna()]
175
- return new_gdf
176
-
177
-
178
- def select_null(gdf, col_name):
179
- new_gdf = gdf[gdf[col_name].isna()]
180
- return new_gdf
181
-
182
-
183
- def get_data_dict(name):
184
- in_csv = os.path.join(os.getcwd(), "data/realtor_data_dict.csv")
185
- df = pd.read_csv(in_csv)
186
- label = list(df[df["Name"] == name]["Label"])[0]
187
- desc = list(df[df["Name"] == name]["Description"])[0]
188
- return label, desc
189
-
190
-
191
- def get_weeks(df):
192
- seq = list(set(df[~df["week_end_date"].isnull()]["week_end_date"].tolist()))
193
- weeks = [
194
- datetime.date(int(d.split("/")[2]), int(d.split("/")[0]), int(d.split("/")[1]))
195
- for d in seq
196
- ]
197
- weeks.sort()
198
- return weeks
199
-
200
-
201
- def get_saturday(in_date):
202
- idx = (in_date.weekday() + 1) % 7
203
- sat = in_date + datetime.timedelta(6 - idx)
204
- return sat
205
-
206
-
207
- def app():
208
-
209
- st.title("U.S. Real Estate Data and Market Trends")
210
- st.markdown(
211
- """**Introduction:** This interactive dashboard is designed for visualizing U.S. real estate data and market trends at multiple levels (i.e., national,
212
- state, county, and metro). The data sources include [Real Estate Data](https://www.realtor.com/research/data) from realtor.com and
213
- [Cartographic Boundary Files](https://www.census.gov/geographies/mapping-files/time-series/geo/carto-boundary-file.html) from U.S. Census Bureau.
214
- Several open-source packages are used to process the data and generate the visualizations, e.g., [streamlit](https://streamlit.io),
215
- [geopandas](https://geopandas.org), [leafmap](https://leafmap.org), and [pydeck](https://deckgl.readthedocs.io).
216
- """
217
- )
218
-
219
- with st.expander("See a demo"):
220
- st.image("https://i.imgur.com/Z3dk6Tr.gif")
221
-
222
- row1_col1, row1_col2, row1_col3, row1_col4, row1_col5 = st.columns(
223
- [0.6, 0.8, 0.6, 1.4, 2]
224
- )
225
- with row1_col1:
226
- frequency = st.selectbox("Monthly/weekly data", ["Monthly", "Weekly"])
227
- with row1_col2:
228
- types = ["Current month data", "Historical data"]
229
- if frequency == "Weekly":
230
- types.remove("Current month data")
231
- cur_hist = st.selectbox(
232
- "Current/historical data",
233
- types,
234
- )
235
- with row1_col3:
236
- if frequency == "Monthly":
237
- scale = st.selectbox(
238
- "Scale", ["National", "State", "Metro", "County"], index=3
239
- )
240
- else:
241
- scale = st.selectbox("Scale", ["National", "Metro"], index=1)
242
-
243
- gdf = get_geom_data(scale.lower())
244
-
245
- if frequency == "Weekly":
246
- inventory_df = get_inventory_data(data_links["weekly"][scale.lower()])
247
- weeks = get_weeks(inventory_df)
248
- with row1_col1:
249
- selected_date = st.date_input("Select a date", value=weeks[-1])
250
- saturday = get_saturday(selected_date)
251
- selected_period = saturday.strftime("%-m/%-d/%Y")
252
- if saturday not in weeks:
253
- st.error(
254
- "The selected date is not available in the data. Please select a date between {} and {}".format(
255
- weeks[0], weeks[-1]
256
- )
257
- )
258
- selected_period = weeks[-1].strftime("%-m/%-d/%Y")
259
- inventory_df = get_inventory_data(data_links["weekly"][scale.lower()])
260
- inventory_df = filter_weekly_inventory(inventory_df, selected_period)
261
-
262
- if frequency == "Monthly":
263
- if cur_hist == "Current month data":
264
- inventory_df = get_inventory_data(
265
- data_links["monthly_current"][scale.lower()]
266
- )
267
- selected_period = get_periods(inventory_df)[0]
268
- else:
269
- with row1_col2:
270
- inventory_df = get_inventory_data(
271
- data_links["monthly_historical"][scale.lower()]
272
- )
273
- start_year, end_year = get_start_end_year(inventory_df)
274
- periods = get_periods(inventory_df)
275
- with st.expander("Select year and month", True):
276
- selected_year = st.slider(
277
- "Year",
278
- start_year,
279
- end_year,
280
- value=start_year,
281
- step=1,
282
- )
283
- selected_month = st.slider(
284
- "Month",
285
- min_value=1,
286
- max_value=12,
287
- value=int(periods[0][-2:]),
288
- step=1,
289
- )
290
- selected_period = str(selected_year) + str(selected_month).zfill(2)
291
- if selected_period not in periods:
292
- st.error("Data not available for selected year and month")
293
- selected_period = periods[0]
294
- inventory_df = inventory_df[
295
- inventory_df["month_date_yyyymm"] == int(selected_period)
296
- ]
297
-
298
- data_cols = get_data_columns(inventory_df, scale.lower(), frequency.lower())
299
-
300
- with row1_col4:
301
- selected_col = st.selectbox("Attribute", data_cols)
302
- with row1_col5:
303
- show_desc = st.checkbox("Show attribute description")
304
- if show_desc:
305
- try:
306
- label, desc = get_data_dict(selected_col.strip())
307
- markdown = f"""
308
- **{label}**: {desc}
309
- """
310
- st.markdown(markdown)
311
- except:
312
- st.warning("No description available for selected attribute")
313
-
314
- row2_col1, row2_col2, row2_col3, row2_col4, row2_col5, row2_col6 = st.columns(
315
- [0.6, 0.68, 0.7, 0.7, 1.5, 0.8]
316
- )
317
-
318
- palettes = cm.list_colormaps()
319
- with row2_col1:
320
- palette = st.selectbox("Color palette", palettes, index=palettes.index("Blues"))
321
- with row2_col2:
322
- n_colors = st.slider("Number of colors", min_value=2, max_value=20, value=8)
323
- with row2_col3:
324
- show_nodata = st.checkbox("Show nodata areas", value=True)
325
- with row2_col4:
326
- show_3d = st.checkbox("Show 3D view", value=False)
327
- with row2_col5:
328
- if show_3d:
329
- elev_scale = st.slider(
330
- "Elevation scale", min_value=1, max_value=1000000, value=1, step=10
331
- )
332
- with row2_col6:
333
- st.info("Press Ctrl and move the left mouse button.")
334
- else:
335
- elev_scale = 1
336
-
337
- gdf = join_attributes(gdf, inventory_df, scale.lower())
338
- gdf_null = select_null(gdf, selected_col)
339
- gdf = select_non_null(gdf, selected_col)
340
- gdf = gdf.sort_values(by=selected_col, ascending=True)
341
-
342
- colors = cm.get_palette(palette, n_colors)
343
- colors = [hex_to_rgb(c) for c in colors]
344
-
345
- for i, ind in enumerate(gdf.index):
346
- index = int(i / (len(gdf) / len(colors)))
347
- if index >= len(colors):
348
- index = len(colors) - 1
349
- gdf.loc[ind, "R"] = colors[index][0]
350
- gdf.loc[ind, "G"] = colors[index][1]
351
- gdf.loc[ind, "B"] = colors[index][2]
352
-
353
- initial_view_state = pdk.ViewState(
354
- latitude=40, longitude=-100, zoom=3, max_zoom=16, pitch=0, bearing=0
355
- )
356
-
357
- min_value = gdf[selected_col].min()
358
- max_value = gdf[selected_col].max()
359
- color = "color"
360
- # color_exp = f"[({selected_col}-{min_value})/({max_value}-{min_value})*255, 0, 0]"
361
- color_exp = f"[R, G, B]"
362
-
363
- geojson = pdk.Layer(
364
- "GeoJsonLayer",
365
- gdf,
366
- pickable=True,
367
- opacity=0.5,
368
- stroked=True,
369
- filled=True,
370
- extruded=show_3d,
371
- wireframe=True,
372
- get_elevation=f"{selected_col}",
373
- elevation_scale=elev_scale,
374
- # get_fill_color="color",
375
- get_fill_color=color_exp,
376
- get_line_color=[0, 0, 0],
377
- get_line_width=2,
378
- line_width_min_pixels=1,
379
- )
380
-
381
- geojson_null = pdk.Layer(
382
- "GeoJsonLayer",
383
- gdf_null,
384
- pickable=True,
385
- opacity=0.2,
386
- stroked=True,
387
- filled=True,
388
- extruded=False,
389
- wireframe=True,
390
- # get_elevation="properties.ALAND/100000",
391
- # get_fill_color="color",
392
- get_fill_color=[200, 200, 200],
393
- get_line_color=[0, 0, 0],
394
- get_line_width=2,
395
- line_width_min_pixels=1,
396
- )
397
-
398
- # tooltip = {"text": "Name: {NAME}"}
399
-
400
- # tooltip_value = f"<b>Value:</b> {median_listing_price}""
401
- tooltip = {
402
- "html": "<b>Name:</b> {NAME}<br><b>Value:</b> {"
403
- + selected_col
404
- + "}<br><b>Date:</b> "
405
- + selected_period
406
- + "",
407
- "style": {"backgroundColor": "steelblue", "color": "white"},
408
- }
409
-
410
- layers = [geojson]
411
- if show_nodata:
412
- layers.append(geojson_null)
413
-
414
- r = pdk.Deck(
415
- layers=layers,
416
- initial_view_state=initial_view_state,
417
- map_style="light",
418
- tooltip=tooltip,
419
- )
420
-
421
- row3_col1, row3_col2 = st.columns([6, 1])
422
-
423
- with row3_col1:
424
- st.pydeck_chart(r)
425
- with row3_col2:
426
- st.write(
427
- cm.create_colormap(
428
- palette,
429
- label=selected_col.replace("_", " ").title(),
430
- width=0.2,
431
- height=3,
432
- orientation="vertical",
433
- vmin=min_value,
434
- vmax=max_value,
435
- font_size=10,
436
- )
437
- )
438
- row4_col1, row4_col2, row4_col3 = st.columns([1, 2, 3])
439
- with row4_col1:
440
- show_data = st.checkbox("Show raw data")
441
- with row4_col2:
442
- show_cols = st.multiselect("Select columns", data_cols)
443
- with row4_col3:
444
- show_colormaps = st.checkbox("Preview all color palettes")
445
- if show_colormaps:
446
- st.write(cm.plot_colormaps(return_fig=True))
447
- if show_data:
448
- if scale == "National":
449
- st.dataframe(gdf[["NAME", "GEOID"] + show_cols])
450
- elif scale == "State":
451
- st.dataframe(gdf[["NAME", "STUSPS"] + show_cols])
452
- elif scale == "County":
453
- st.dataframe(gdf[["NAME", "STATEFP", "COUNTYFP"] + show_cols])
454
- elif scale == "Metro":
455
- st.dataframe(gdf[["NAME", "CBSAFP"] + show_cols])
456
- elif scale == "Zip":
457
- st.dataframe(gdf[["GEOID10"] + show_cols])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
apps/hurricane.py DELETED
@@ -1,52 +0,0 @@
1
- import streamlit as st
2
- import tropycal.tracks as tracks
3
-
4
-
5
- @st.cache(allow_output_mutation=True)
6
- def read_data(basin='north_atlantic', source='hurdat', include_btk=False):
7
- return tracks.TrackDataset(basin=basin, source=source, include_btk=include_btk)
8
-
9
-
10
- def app():
11
-
12
- st.title("Hurricane Mapping")
13
-
14
- row1_col1, row1_col2 = st.columns([3, 1])
15
-
16
- with row1_col1:
17
- empty = st.empty()
18
- empty.image("https://i.imgur.com/Ec7qsR0.png")
19
-
20
- with row1_col2:
21
-
22
- checkbox = st.checkbox("Select from a list of hurricanes", value=False)
23
- if checkbox:
24
- if st.session_state.get('hurricane') is None:
25
- st.session_state['hurricane'] = read_data()
26
-
27
- years = st.slider(
28
- 'Select a year', min_value=1950, max_value=2022, value=(2000, 2010)
29
- )
30
- storms = st.session_state['hurricane'].filter_storms(year_range=years)
31
- selected = st.selectbox('Select a storm', storms)
32
- storm = st.session_state['hurricane'].get_storm(selected)
33
- ax = storm.plot()
34
- fig = ax.get_figure()
35
- empty.pyplot(fig)
36
- else:
37
-
38
- name = st.text_input("Or enter a storm Name", "michael")
39
- if name:
40
- if st.session_state.get('hurricane') is None:
41
- st.session_state['hurricane'] = read_data()
42
- basin = st.session_state['hurricane']
43
- years = basin.search_name(name)
44
- if len(years) > 0:
45
- year = st.selectbox("Select a year", years)
46
- storm = basin.get_storm((name, year))
47
- ax = storm.plot()
48
- fig = ax.get_figure()
49
- empty.pyplot(fig)
50
- else:
51
- empty.text("No storms found")
52
- st.write("No storms found")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
apps/plotly_maps.py DELETED
@@ -1,17 +0,0 @@
1
- import streamlit as st
2
- import leafmap.plotlymap as leafmap
3
-
4
-
5
- def app():
6
-
7
- st.title("Plotly Maps")
8
- m = leafmap.Map(basemap="street", height=650)
9
- m.add_mapbox_layer(style="streets")
10
-
11
- basemaps = list(leafmap.basemaps.keys())
12
- basemap = st.selectbox(
13
- "Select a basemap", basemaps, basemaps.index("Stamen.Terrain")
14
- )
15
- m.add_basemap(basemap)
16
-
17
- st.plotly_chart(m, use_container_width=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
apps/raster.py DELETED
@@ -1,77 +0,0 @@
1
- import os
2
- import leafmap.foliumap as leafmap
3
- import streamlit as st
4
- import palettable
5
-
6
-
7
- @st.cache(allow_output_mutation=True)
8
- def load_cog_list():
9
- print(os.getcwd())
10
- in_txt = os.path.join(os.getcwd(), "data/cog_files.txt")
11
- with open(in_txt) as f:
12
- return [line.strip() for line in f.readlines()[1:]]
13
-
14
-
15
- @st.cache(allow_output_mutation=True)
16
- def get_palettes():
17
- palettes = dir(palettable.matplotlib)[:-16]
18
- return ["matplotlib." + p for p in palettes]
19
-
20
-
21
- def app():
22
-
23
- st.title("Visualize Raster Datasets")
24
- st.markdown(
25
- """
26
- An interactive web app for visualizing local raster datasets and Cloud Optimized GeoTIFF ([COG](https://www.cogeo.org)). The app was built using [streamlit](https://streamlit.io), [leafmap](https://leafmap.org), and [localtileserver](https://github.com/banesullivan/localtileserver).
27
-
28
-
29
- """
30
- )
31
-
32
- row1_col1, row1_col2 = st.columns([2, 1])
33
-
34
- with row1_col1:
35
- cog_list = load_cog_list()
36
- cog = st.selectbox("Select a sample Cloud Opitmized GeoTIFF (COG)", cog_list)
37
-
38
- with row1_col2:
39
- empty = st.empty()
40
-
41
- url = empty.text_input(
42
- "Enter a HTTP URL to a Cloud Optimized GeoTIFF (COG)",
43
- cog,
44
- )
45
-
46
- data = st.file_uploader("Upload a raster dataset", type=["tif", "img"])
47
-
48
- if data:
49
- url = empty.text_input(
50
- "Enter a URL to a Cloud Optimized GeoTIFF (COG)",
51
- "",
52
- )
53
-
54
- add_palette = st.checkbox("Add a color palette")
55
- if add_palette:
56
- palette = st.selectbox("Select a color palette", get_palettes())
57
- else:
58
- palette = None
59
-
60
- submit = st.button("Submit")
61
-
62
- m = leafmap.Map(latlon_control=False)
63
-
64
- if submit:
65
- if data or url:
66
- try:
67
- if data:
68
- file_path = leafmap.save_data(data)
69
- m.add_local_tile(file_path, palette=palette, debug=True)
70
- elif url:
71
- m.add_remote_tile(url, palette=palette, debug=True)
72
- except Exception as e:
73
- with row1_col2:
74
- st.error("Work in progress. Try it again later.")
75
-
76
- with row1_col1:
77
- m.to_streamlit()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
apps/rois.py DELETED
@@ -1,174 +0,0 @@
1
- """ A module for storing some sample ROIs for creating Landsat/GOES timelapse.
2
- """
3
-
4
- from shapely.geometry import Polygon
5
-
6
- goes_rois = {
7
- "Creek Fire, CA (2020-09-05)": {
8
- "region": Polygon(
9
- [
10
- [-121.003418, 36.848857],
11
- [-121.003418, 39.049052],
12
- [-117.905273, 39.049052],
13
- [-117.905273, 36.848857],
14
- [-121.003418, 36.848857],
15
- ]
16
- ),
17
- "start_time": "2020-09-05T15:00:00",
18
- "end_time": "2020-09-06T02:00:00",
19
- },
20
- "Bomb Cyclone (2021-10-24)": {
21
- "region": Polygon(
22
- [
23
- [-159.5954, 60.4088],
24
- [-159.5954, 24.5178],
25
- [-114.2438, 24.5178],
26
- [-114.2438, 60.4088],
27
- ]
28
- ),
29
- "start_time": "2021-10-24T14:00:00",
30
- "end_time": "2021-10-25T01:00:00",
31
- },
32
- "Hunga Tonga Volcanic Eruption (2022-01-15)": {
33
- "region": Polygon(
34
- [
35
- [-192.480469, -32.546813],
36
- [-192.480469, -8.754795],
37
- [-157.587891, -8.754795],
38
- [-157.587891, -32.546813],
39
- [-192.480469, -32.546813],
40
- ]
41
- ),
42
- "start_time": "2022-01-15T03:00:00",
43
- "end_time": "2022-01-15T07:00:00",
44
- },
45
- "Hunga Tonga Volcanic Eruption Closer Look (2022-01-15)": {
46
- "region": Polygon(
47
- [
48
- [-178.901367, -22.958393],
49
- [-178.901367, -17.85329],
50
- [-171.452637, -17.85329],
51
- [-171.452637, -22.958393],
52
- [-178.901367, -22.958393],
53
- ]
54
- ),
55
- "start_time": "2022-01-15T03:00:00",
56
- "end_time": "2022-01-15T07:00:00",
57
- },
58
- }
59
-
60
-
61
- landsat_rois = {
62
- "Aral Sea": Polygon(
63
- [
64
- [57.667236, 43.834527],
65
- [57.667236, 45.996962],
66
- [61.12793, 45.996962],
67
- [61.12793, 43.834527],
68
- [57.667236, 43.834527],
69
- ]
70
- ),
71
- "Dubai": Polygon(
72
- [
73
- [54.541626, 24.763044],
74
- [54.541626, 25.427152],
75
- [55.632019, 25.427152],
76
- [55.632019, 24.763044],
77
- [54.541626, 24.763044],
78
- ]
79
- ),
80
- "Hong Kong International Airport": Polygon(
81
- [
82
- [113.825226, 22.198849],
83
- [113.825226, 22.349758],
84
- [114.085121, 22.349758],
85
- [114.085121, 22.198849],
86
- [113.825226, 22.198849],
87
- ]
88
- ),
89
- "Las Vegas, NV": Polygon(
90
- [
91
- [-115.554199, 35.804449],
92
- [-115.554199, 36.558188],
93
- [-113.903503, 36.558188],
94
- [-113.903503, 35.804449],
95
- [-115.554199, 35.804449],
96
- ]
97
- ),
98
- "Pucallpa, Peru": Polygon(
99
- [
100
- [-74.672699, -8.600032],
101
- [-74.672699, -8.254983],
102
- [-74.279938, -8.254983],
103
- [-74.279938, -8.600032],
104
- ]
105
- ),
106
- "Sierra Gorda, Chile": Polygon(
107
- [
108
- [-69.315491, -22.837104],
109
- [-69.315491, -22.751488],
110
- [-69.190006, -22.751488],
111
- [-69.190006, -22.837104],
112
- [-69.315491, -22.837104],
113
- ]
114
- ),
115
- }
116
-
117
- modis_rois = {
118
- "World": Polygon(
119
- [
120
- [-171.210938, -57.136239],
121
- [-171.210938, 79.997168],
122
- [177.539063, 79.997168],
123
- [177.539063, -57.136239],
124
- [-171.210938, -57.136239],
125
- ]
126
- ),
127
- "Africa": Polygon(
128
- [
129
- [-18.6983, 38.1446],
130
- [-18.6983, -36.1630],
131
- [52.2293, -36.1630],
132
- [52.2293, 38.1446],
133
- ]
134
- ),
135
- "USA": Polygon(
136
- [
137
- [-127.177734, 23.725012],
138
- [-127.177734, 50.792047],
139
- [-66.269531, 50.792047],
140
- [-66.269531, 23.725012],
141
- [-127.177734, 23.725012],
142
- ]
143
- ),
144
- }
145
-
146
- ocean_rois = {
147
- "Gulf of Mexico": Polygon(
148
- [
149
- [-101.206055, 15.496032],
150
- [-101.206055, 32.361403],
151
- [-75.673828, 32.361403],
152
- [-75.673828, 15.496032],
153
- [-101.206055, 15.496032],
154
- ]
155
- ),
156
- "North Atlantic Ocean": Polygon(
157
- [
158
- [-85.341797, 24.046464],
159
- [-85.341797, 45.02695],
160
- [-55.810547, 45.02695],
161
- [-55.810547, 24.046464],
162
- [-85.341797, 24.046464],
163
- ]
164
- ),
165
- "World": Polygon(
166
- [
167
- [-171.210938, -57.136239],
168
- [-171.210938, 79.997168],
169
- [177.539063, 79.997168],
170
- [177.539063, -57.136239],
171
- [-171.210938, -57.136239],
172
- ]
173
- ),
174
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
apps/timelapse.py DELETED
@@ -1,1314 +0,0 @@
1
- import ee
2
- import os
3
- import datetime
4
- import fiona
5
- import geopandas as gpd
6
- import folium
7
- import streamlit as st
8
- import geemap.colormaps as cm
9
- import geemap.foliumap as geemap
10
- from datetime import date
11
- from .rois import *
12
-
13
-
14
- @st.cache(allow_output_mutation=True)
15
- def uploaded_file_to_gdf(data):
16
- import tempfile
17
- import os
18
- import uuid
19
-
20
- _, file_extension = os.path.splitext(data.name)
21
- file_id = str(uuid.uuid4())
22
- file_path = os.path.join(tempfile.gettempdir(), f"{file_id}{file_extension}")
23
-
24
- with open(file_path, "wb") as file:
25
- file.write(data.getbuffer())
26
-
27
- if file_path.lower().endswith(".kml"):
28
- fiona.drvsupport.supported_drivers["KML"] = "rw"
29
- gdf = gpd.read_file(file_path, driver="KML")
30
- else:
31
- gdf = gpd.read_file(file_path)
32
-
33
- return gdf
34
-
35
-
36
- def app():
37
-
38
- today = date.today()
39
-
40
- st.title("Create Timelapse")
41
-
42
- st.markdown(
43
- """
44
- An interactive web app for creating [Landsat](https://developers.google.com/earth-engine/datasets/catalog/landsat)/[GOES](https://jstnbraaten.medium.com/goes-in-earth-engine-53fbc8783c16) timelapse for any location around the globe.
45
- The app was built using [streamlit](https://streamlit.io), [geemap](https://geemap.org), and [Google Earth Engine](https://earthengine.google.com). For more info, check out my streamlit [blog post](https://blog.streamlit.io/creating-satellite-timelapse-with-streamlit-and-earth-engine).
46
- """
47
- )
48
-
49
- row1_col1, row1_col2 = st.columns([2, 1])
50
-
51
- if st.session_state.get("zoom_level") is None:
52
- st.session_state["zoom_level"] = 4
53
-
54
- st.session_state["ee_asset_id"] = None
55
- st.session_state["bands"] = None
56
- st.session_state["palette"] = None
57
- st.session_state["vis_params"] = None
58
-
59
- with row1_col1:
60
- m = geemap.Map(
61
- basemap="HYBRID",
62
- plugin_Draw=True,
63
- Draw_export=True,
64
- locate_control=True,
65
- plugin_LatLngPopup=False,
66
- )
67
- m.add_basemap("ROADMAP")
68
-
69
- with row1_col2:
70
-
71
- keyword = st.text_input("Search for a location:", "")
72
- if keyword:
73
- locations = geemap.geocode(keyword)
74
- if locations is not None and len(locations) > 0:
75
- str_locations = [str(g)[1:-1] for g in locations]
76
- location = st.selectbox("Select a location:", str_locations)
77
- loc_index = str_locations.index(location)
78
- selected_loc = locations[loc_index]
79
- lat, lng = selected_loc.lat, selected_loc.lng
80
- folium.Marker(location=[lat, lng], popup=location).add_to(m)
81
- m.set_center(lng, lat, 12)
82
- st.session_state["zoom_level"] = 12
83
-
84
- collection = st.selectbox(
85
- "Select a satellite image collection: ",
86
- [
87
- "Any Earth Engine ImageCollection",
88
- "Landsat TM-ETM-OLI Surface Reflectance",
89
- "Sentinel-2 MSI Surface Reflectance",
90
- "Geostationary Operational Environmental Satellites (GOES)",
91
- "MODIS Vegetation Indices (NDVI/EVI) 16-Day Global 1km",
92
- "MODIS Gap filled Land Surface Temperature Daily",
93
- "MODIS Ocean Color SMI",
94
- "USDA National Agriculture Imagery Program (NAIP)",
95
- ],
96
- index=1,
97
- )
98
-
99
- if collection in [
100
- "Landsat TM-ETM-OLI Surface Reflectance",
101
- "Sentinel-2 MSI Surface Reflectance",
102
- ]:
103
- roi_options = ["Uploaded GeoJSON"] + list(landsat_rois.keys())
104
-
105
- elif collection == "Geostationary Operational Environmental Satellites (GOES)":
106
- roi_options = ["Uploaded GeoJSON"] + list(goes_rois.keys())
107
-
108
- elif collection in [
109
- "MODIS Vegetation Indices (NDVI/EVI) 16-Day Global 1km",
110
- "MODIS Gap filled Land Surface Temperature Daily",
111
- ]:
112
- roi_options = ["Uploaded GeoJSON"] + list(modis_rois.keys())
113
- elif collection == "MODIS Ocean Color SMI":
114
- roi_options = ["Uploaded GeoJSON"] + list(ocean_rois.keys())
115
- else:
116
- roi_options = ["Uploaded GeoJSON"]
117
-
118
- if collection == "Any Earth Engine ImageCollection":
119
- keyword = st.text_input("Enter a keyword to search (e.g., MODIS):", "")
120
- if keyword:
121
-
122
- assets = geemap.search_ee_data(keyword)
123
- ee_assets = []
124
- for asset in assets:
125
- if asset["ee_id_snippet"].startswith("ee.ImageCollection"):
126
- ee_assets.append(asset)
127
-
128
- asset_titles = [x["title"] for x in ee_assets]
129
- dataset = st.selectbox("Select a dataset:", asset_titles)
130
- if len(ee_assets) > 0:
131
- st.session_state["ee_assets"] = ee_assets
132
- st.session_state["asset_titles"] = asset_titles
133
- index = asset_titles.index(dataset)
134
- ee_id = ee_assets[index]["id"]
135
- else:
136
- ee_id = ""
137
-
138
- if dataset is not None:
139
- with st.expander("Show dataset details", False):
140
- index = asset_titles.index(dataset)
141
- html = geemap.ee_data_html(st.session_state["ee_assets"][index])
142
- st.markdown(html, True)
143
- # elif collection == "MODIS Gap filled Land Surface Temperature Daily":
144
- # ee_id = ""
145
- else:
146
- ee_id = ""
147
-
148
- asset_id = st.text_input("Enter an ee.ImageCollection asset ID:", ee_id)
149
-
150
- if asset_id:
151
- with st.expander("Customize band combination and color palette", True):
152
- try:
153
- col = ee.ImageCollection.load(asset_id)
154
- st.session_state["ee_asset_id"] = asset_id
155
- except:
156
- st.error("Invalid Earth Engine asset ID.")
157
- st.session_state["ee_asset_id"] = None
158
- return
159
-
160
- img_bands = col.first().bandNames().getInfo()
161
- if len(img_bands) >= 3:
162
- default_bands = img_bands[:3][::-1]
163
- else:
164
- default_bands = img_bands[:]
165
- bands = st.multiselect(
166
- "Select one or three bands (RGB):", img_bands, default_bands
167
- )
168
- st.session_state["bands"] = bands
169
-
170
- if len(bands) == 1:
171
- palette_options = st.selectbox(
172
- "Color palette",
173
- cm.list_colormaps(),
174
- index=2,
175
- )
176
- palette_values = cm.get_palette(palette_options, 15)
177
- palette = st.text_area(
178
- "Enter a custom palette:",
179
- palette_values,
180
- )
181
- st.write(
182
- cm.plot_colormap(cmap=palette_options, return_fig=True)
183
- )
184
- st.session_state["palette"] = eval(palette)
185
-
186
- if bands:
187
- vis_params = st.text_area(
188
- "Enter visualization parameters",
189
- "{'bands': ["
190
- + ", ".join([f"'{band}'" for band in bands])
191
- + "]}",
192
- )
193
- else:
194
- vis_params = st.text_area(
195
- "Enter visualization parameters",
196
- "{}",
197
- )
198
- try:
199
- st.session_state["vis_params"] = eval(vis_params)
200
- st.session_state["vis_params"]["palette"] = st.session_state[
201
- "palette"
202
- ]
203
- except Exception as e:
204
- st.session_state["vis_params"] = None
205
- st.error(
206
- f"Invalid visualization parameters. It must be a dictionary."
207
- )
208
-
209
- elif collection == "MODIS Gap filled Land Surface Temperature Daily":
210
- with st.expander("Show dataset details", False):
211
- st.markdown(
212
- """
213
- See the [Awesome GEE Community Datasets](https://samapriya.github.io/awesome-gee-community-datasets/projects/daily_lst/).
214
- """
215
- )
216
-
217
- MODIS_options = ["Daytime (1:30 pm)", "Nighttime (1:30 am)"]
218
- MODIS_option = st.selectbox("Select a MODIS dataset:", MODIS_options)
219
- if MODIS_option == "Daytime (1:30 pm)":
220
- st.session_state[
221
- "ee_asset_id"
222
- ] = "projects/sat-io/open-datasets/gap-filled-lst/gf_day_1km"
223
- else:
224
- st.session_state[
225
- "ee_asset_id"
226
- ] = "projects/sat-io/open-datasets/gap-filled-lst/gf_night_1km"
227
-
228
- palette_options = st.selectbox(
229
- "Color palette",
230
- cm.list_colormaps(),
231
- index=90,
232
- )
233
- palette_values = cm.get_palette(palette_options, 15)
234
- palette = st.text_area(
235
- "Enter a custom palette:",
236
- palette_values,
237
- )
238
- st.write(cm.plot_colormap(cmap=palette_options, return_fig=True))
239
- st.session_state["palette"] = eval(palette)
240
- elif collection == "MODIS Ocean Color SMI":
241
- with st.expander("Show dataset details", False):
242
- st.markdown(
243
- """
244
- See the [Earth Engine Data Catalog](https://developers.google.com/earth-engine/datasets/catalog/NASA_OCEANDATA_MODIS-Aqua_L3SMI).
245
- """
246
- )
247
-
248
- MODIS_options = ["Aqua", "Terra"]
249
- MODIS_option = st.selectbox("Select a satellite:", MODIS_options)
250
- st.session_state["ee_asset_id"] = MODIS_option
251
- # if MODIS_option == "Daytime (1:30 pm)":
252
- # st.session_state[
253
- # "ee_asset_id"
254
- # ] = "projects/sat-io/open-datasets/gap-filled-lst/gf_day_1km"
255
- # else:
256
- # st.session_state[
257
- # "ee_asset_id"
258
- # ] = "projects/sat-io/open-datasets/gap-filled-lst/gf_night_1km"
259
-
260
- band_dict = {
261
- "Chlorophyll a concentration": "chlor_a",
262
- "Normalized fluorescence line height": "nflh",
263
- "Particulate organic carbon": "poc",
264
- "Sea surface temperature": "sst",
265
- "Remote sensing reflectance at band 412nm": "Rrs_412",
266
- "Remote sensing reflectance at band 443nm": "Rrs_443",
267
- "Remote sensing reflectance at band 469nm": "Rrs_469",
268
- "Remote sensing reflectance at band 488nm": "Rrs_488",
269
- "Remote sensing reflectance at band 531nm": "Rrs_531",
270
- "Remote sensing reflectance at band 547nm": "Rrs_547",
271
- "Remote sensing reflectance at band 555nm": "Rrs_555",
272
- "Remote sensing reflectance at band 645nm": "Rrs_645",
273
- "Remote sensing reflectance at band 667nm": "Rrs_667",
274
- "Remote sensing reflectance at band 678nm": "Rrs_678",
275
- }
276
-
277
- band_options = list(band_dict.keys())
278
- band = st.selectbox(
279
- "Select a band",
280
- band_options,
281
- band_options.index("Sea surface temperature"),
282
- )
283
- st.session_state["band"] = band_dict[band]
284
-
285
- colors = cm.list_colormaps()
286
- palette_options = st.selectbox(
287
- "Color palette",
288
- colors,
289
- index=colors.index("coolwarm"),
290
- )
291
- palette_values = cm.get_palette(palette_options, 15)
292
- palette = st.text_area(
293
- "Enter a custom palette:",
294
- palette_values,
295
- )
296
- st.write(cm.plot_colormap(cmap=palette_options, return_fig=True))
297
- st.session_state["palette"] = eval(palette)
298
-
299
- sample_roi = st.selectbox(
300
- "Select a sample ROI or upload a GeoJSON file:",
301
- roi_options,
302
- index=0,
303
- )
304
-
305
- add_outline = st.checkbox(
306
- "Overlay an administrative boundary on timelapse", False
307
- )
308
-
309
- if add_outline:
310
-
311
- with st.expander("Customize administrative boundary", True):
312
-
313
- overlay_options = {
314
- "User-defined": None,
315
- "Continents": "continents",
316
- "Countries": "countries",
317
- "US States": "us_states",
318
- "China": "china",
319
- }
320
-
321
- overlay = st.selectbox(
322
- "Select an administrative boundary:",
323
- list(overlay_options.keys()),
324
- index=2,
325
- )
326
-
327
- overlay_data = overlay_options[overlay]
328
-
329
- if overlay_data is None:
330
- overlay_data = st.text_input(
331
- "Enter an HTTP URL to a GeoJSON file or an ee.FeatureCollection asset id:",
332
- "https://raw.githubusercontent.com/giswqs/geemap/master/examples/data/countries.geojson",
333
- )
334
-
335
- overlay_color = st.color_picker(
336
- "Select a color for the administrative boundary:", "#000000"
337
- )
338
- overlay_width = st.slider(
339
- "Select a line width for the administrative boundary:", 1, 20, 1
340
- )
341
- overlay_opacity = st.slider(
342
- "Select an opacity for the administrative boundary:",
343
- 0.0,
344
- 1.0,
345
- 1.0,
346
- 0.05,
347
- )
348
- else:
349
- overlay_data = None
350
- overlay_color = "black"
351
- overlay_width = 1
352
- overlay_opacity = 1
353
-
354
- with row1_col1:
355
-
356
- with st.expander(
357
- "Steps: Draw a rectangle on the map -> Export it as a GeoJSON -> Upload it back to the app -> Click the Submit button. Expand this tab to see a demo πŸ‘‰"
358
- ):
359
- video_empty = st.empty()
360
-
361
- data = st.file_uploader(
362
- "Upload a GeoJSON file to use as an ROI. Customize timelapse parameters and then click the Submit button πŸ˜‡πŸ‘‡",
363
- type=["geojson", "kml", "zip"],
364
- )
365
-
366
- crs = "epsg:4326"
367
- if sample_roi == "Uploaded GeoJSON":
368
- if data is None:
369
- # st.info(
370
- # "Steps to create a timelapse: Draw a rectangle on the map -> Export it as a GeoJSON -> Upload it back to the app -> Click Submit button"
371
- # )
372
- if collection in [
373
- "Geostationary Operational Environmental Satellites (GOES)",
374
- "USDA National Agriculture Imagery Program (NAIP)",
375
- ] and (not keyword):
376
- m.set_center(-100, 40, 3)
377
- # else:
378
- # m.set_center(4.20, 18.63, zoom=2)
379
- else:
380
- if collection in [
381
- "Landsat TM-ETM-OLI Surface Reflectance",
382
- "Sentinel-2 MSI Surface Reflectance",
383
- ]:
384
- gdf = gpd.GeoDataFrame(
385
- index=[0], crs=crs, geometry=[landsat_rois[sample_roi]]
386
- )
387
- elif (
388
- collection
389
- == "Geostationary Operational Environmental Satellites (GOES)"
390
- ):
391
- gdf = gpd.GeoDataFrame(
392
- index=[0], crs=crs, geometry=[goes_rois[sample_roi]["region"]]
393
- )
394
- elif collection == "MODIS Vegetation Indices (NDVI/EVI) 16-Day Global 1km":
395
- gdf = gpd.GeoDataFrame(
396
- index=[0], crs=crs, geometry=[modis_rois[sample_roi]]
397
- )
398
-
399
- if sample_roi != "Uploaded GeoJSON":
400
-
401
- if collection in [
402
- "Landsat TM-ETM-OLI Surface Reflectance",
403
- "Sentinel-2 MSI Surface Reflectance",
404
- ]:
405
- gdf = gpd.GeoDataFrame(
406
- index=[0], crs=crs, geometry=[landsat_rois[sample_roi]]
407
- )
408
- elif (
409
- collection
410
- == "Geostationary Operational Environmental Satellites (GOES)"
411
- ):
412
- gdf = gpd.GeoDataFrame(
413
- index=[0], crs=crs, geometry=[goes_rois[sample_roi]["region"]]
414
- )
415
- elif collection in [
416
- "MODIS Vegetation Indices (NDVI/EVI) 16-Day Global 1km",
417
- "MODIS Gap filled Land Surface Temperature Daily",
418
- ]:
419
- gdf = gpd.GeoDataFrame(
420
- index=[0], crs=crs, geometry=[modis_rois[sample_roi]]
421
- )
422
- elif collection == "MODIS Ocean Color SMI":
423
- gdf = gpd.GeoDataFrame(
424
- index=[0], crs=crs, geometry=[ocean_rois[sample_roi]]
425
- )
426
- st.session_state["roi"] = geemap.gdf_to_ee(gdf, geodesic=False)
427
- m.add_gdf(gdf, "ROI")
428
-
429
- elif data:
430
- gdf = uploaded_file_to_gdf(data)
431
- st.session_state["roi"] = geemap.gdf_to_ee(gdf, geodesic=False)
432
- m.add_gdf(gdf, "ROI")
433
-
434
- m.to_streamlit(height=600)
435
-
436
- with row1_col2:
437
-
438
- if collection in [
439
- "Landsat TM-ETM-OLI Surface Reflectance",
440
- "Sentinel-2 MSI Surface Reflectance",
441
- ]:
442
-
443
- if collection == "Landsat TM-ETM-OLI Surface Reflectance":
444
- sensor_start_year = 1984
445
- timelapse_title = "Landsat Timelapse"
446
- timelapse_speed = 5
447
- elif collection == "Sentinel-2 MSI Surface Reflectance":
448
- sensor_start_year = 2015
449
- timelapse_title = "Sentinel-2 Timelapse"
450
- timelapse_speed = 5
451
- video_empty.video("https://youtu.be/VVRK_-dEjR4")
452
-
453
- with st.form("submit_landsat_form"):
454
-
455
- roi = None
456
- if st.session_state.get("roi") is not None:
457
- roi = st.session_state.get("roi")
458
- out_gif = geemap.temp_file_path(".gif")
459
-
460
- title = st.text_input(
461
- "Enter a title to show on the timelapse: ", timelapse_title
462
- )
463
- RGB = st.selectbox(
464
- "Select an RGB band combination:",
465
- [
466
- "Red/Green/Blue",
467
- "NIR/Red/Green",
468
- "SWIR2/SWIR1/NIR",
469
- "NIR/SWIR1/Red",
470
- "SWIR2/NIR/Red",
471
- "SWIR2/SWIR1/Red",
472
- "SWIR1/NIR/Blue",
473
- "NIR/SWIR1/Blue",
474
- "SWIR2/NIR/Green",
475
- "SWIR1/NIR/Red",
476
- "SWIR2/NIR/SWIR1",
477
- "SWIR1/NIR/SWIR2",
478
- ],
479
- index=9,
480
- )
481
-
482
- frequency = st.selectbox(
483
- "Select a temporal frequency:",
484
- ["year", "quarter", "month"],
485
- index=0,
486
- )
487
-
488
- with st.expander("Customize timelapse"):
489
-
490
- speed = st.slider("Frames per second:", 1, 30, timelapse_speed)
491
- dimensions = st.slider(
492
- "Maximum dimensions (Width*Height) in pixels", 768, 2000, 768
493
- )
494
- progress_bar_color = st.color_picker(
495
- "Progress bar color:", "#0000ff"
496
- )
497
- years = st.slider(
498
- "Start and end year:",
499
- sensor_start_year,
500
- today.year,
501
- (sensor_start_year, today.year),
502
- )
503
- months = st.slider("Start and end month:", 1, 12, (1, 12))
504
- font_size = st.slider("Font size:", 10, 50, 30)
505
- font_color = st.color_picker("Font color:", "#ffffff")
506
- apply_fmask = st.checkbox(
507
- "Apply fmask (remove clouds, shadows, snow)", True
508
- )
509
- font_type = st.selectbox(
510
- "Select the font type for the title:",
511
- ["arial.ttf", "alibaba.otf"],
512
- index=0,
513
- )
514
- fading = st.slider(
515
- "Fading duration (seconds) for each frame:", 0.0, 3.0, 0.0
516
- )
517
- mp4 = st.checkbox("Save timelapse as MP4", True)
518
-
519
- empty_text = st.empty()
520
- empty_image = st.empty()
521
- empty_fire_image = st.empty()
522
- empty_video = st.container()
523
- submitted = st.form_submit_button("Submit")
524
- if submitted:
525
-
526
- if sample_roi == "Uploaded GeoJSON" and data is None:
527
- empty_text.warning(
528
- "Steps to create a timelapse: Draw a rectangle on the map -> Export it as a GeoJSON -> Upload it back to the app -> Click the Submit button. Alternatively, you can select a sample ROI from the dropdown list."
529
- )
530
- else:
531
-
532
- empty_text.text("Computing... Please wait...")
533
-
534
- start_year = years[0]
535
- end_year = years[1]
536
- start_date = str(months[0]).zfill(2) + "-01"
537
- end_date = str(months[1]).zfill(2) + "-30"
538
- bands = RGB.split("/")
539
-
540
- try:
541
- if collection == "Landsat TM-ETM-OLI Surface Reflectance":
542
- out_gif = geemap.landsat_timelapse(
543
- roi=roi,
544
- out_gif=out_gif,
545
- start_year=start_year,
546
- end_year=end_year,
547
- start_date=start_date,
548
- end_date=end_date,
549
- bands=bands,
550
- apply_fmask=apply_fmask,
551
- frames_per_second=speed,
552
- dimensions=dimensions,
553
- overlay_data=overlay_data,
554
- overlay_color=overlay_color,
555
- overlay_width=overlay_width,
556
- overlay_opacity=overlay_opacity,
557
- frequency=frequency,
558
- date_format=None,
559
- title=title,
560
- title_xy=("2%", "90%"),
561
- add_text=True,
562
- text_xy=("2%", "2%"),
563
- text_sequence=None,
564
- font_type=font_type,
565
- font_size=font_size,
566
- font_color=font_color,
567
- add_progress_bar=True,
568
- progress_bar_color=progress_bar_color,
569
- progress_bar_height=5,
570
- loop=0,
571
- mp4=mp4,
572
- fading=fading,
573
- )
574
- elif collection == "Sentinel-2 MSI Surface Reflectance":
575
- out_gif = geemap.sentinel2_timelapse(
576
- roi=roi,
577
- out_gif=out_gif,
578
- start_year=start_year,
579
- end_year=end_year,
580
- start_date=start_date,
581
- end_date=end_date,
582
- bands=bands,
583
- apply_fmask=apply_fmask,
584
- frames_per_second=speed,
585
- dimensions=dimensions,
586
- overlay_data=overlay_data,
587
- overlay_color=overlay_color,
588
- overlay_width=overlay_width,
589
- overlay_opacity=overlay_opacity,
590
- frequency=frequency,
591
- date_format=None,
592
- title=title,
593
- title_xy=("2%", "90%"),
594
- add_text=True,
595
- text_xy=("2%", "2%"),
596
- text_sequence=None,
597
- font_type=font_type,
598
- font_size=font_size,
599
- font_color=font_color,
600
- add_progress_bar=True,
601
- progress_bar_color=progress_bar_color,
602
- progress_bar_height=5,
603
- loop=0,
604
- mp4=mp4,
605
- fading=fading,
606
- )
607
- except:
608
- empty_text.error(
609
- "An error occurred while computing the timelapse. Your probably requested too much data. Try reducing the ROI or timespan."
610
- )
611
- st.stop()
612
-
613
- if out_gif is not None and os.path.exists(out_gif):
614
-
615
- empty_text.text(
616
- "Right click the GIF to save it to your computerπŸ‘‡"
617
- )
618
- empty_image.image(out_gif)
619
-
620
- out_mp4 = out_gif.replace(".gif", ".mp4")
621
- if mp4 and os.path.exists(out_mp4):
622
- with empty_video:
623
- st.text(
624
- "Right click the MP4 to save it to your computerπŸ‘‡"
625
- )
626
- st.video(out_gif.replace(".gif", ".mp4"))
627
-
628
- else:
629
- empty_text.error(
630
- "Something went wrong. You probably requested too much data. Try reducing the ROI or timespan."
631
- )
632
-
633
- elif collection == "Geostationary Operational Environmental Satellites (GOES)":
634
-
635
- video_empty.video("https://youtu.be/16fA2QORG4A")
636
-
637
- with st.form("submit_goes_form"):
638
-
639
- roi = None
640
- if st.session_state.get("roi") is not None:
641
- roi = st.session_state.get("roi")
642
- out_gif = geemap.temp_file_path(".gif")
643
-
644
- satellite = st.selectbox("Select a satellite:", ["GOES-17", "GOES-16"])
645
- earliest_date = datetime.date(2017, 7, 10)
646
- latest_date = datetime.date.today()
647
-
648
- if sample_roi == "Uploaded GeoJSON":
649
- roi_start_date = today - datetime.timedelta(days=2)
650
- roi_end_date = today - datetime.timedelta(days=1)
651
- roi_start_time = datetime.time(14, 00)
652
- roi_end_time = datetime.time(1, 00)
653
- else:
654
- roi_start = goes_rois[sample_roi]["start_time"]
655
- roi_end = goes_rois[sample_roi]["end_time"]
656
- roi_start_date = datetime.datetime.strptime(
657
- roi_start[:10], "%Y-%m-%d"
658
- )
659
- roi_end_date = datetime.datetime.strptime(roi_end[:10], "%Y-%m-%d")
660
- roi_start_time = datetime.time(
661
- int(roi_start[11:13]), int(roi_start[14:16])
662
- )
663
- roi_end_time = datetime.time(
664
- int(roi_end[11:13]), int(roi_end[14:16])
665
- )
666
-
667
- start_date = st.date_input("Select the start date:", roi_start_date)
668
- end_date = st.date_input("Select the end date:", roi_end_date)
669
-
670
- with st.expander("Customize timelapse"):
671
-
672
- add_fire = st.checkbox("Add Fire/Hotspot Characterization", False)
673
-
674
- scan_type = st.selectbox(
675
- "Select a scan type:", ["Full Disk", "CONUS", "Mesoscale"]
676
- )
677
-
678
- start_time = st.time_input(
679
- "Select the start time of the start date:", roi_start_time
680
- )
681
-
682
- end_time = st.time_input(
683
- "Select the end time of the end date:", roi_end_time
684
- )
685
-
686
- start = (
687
- start_date.strftime("%Y-%m-%d")
688
- + "T"
689
- + start_time.strftime("%H:%M:%S")
690
- )
691
- end = (
692
- end_date.strftime("%Y-%m-%d")
693
- + "T"
694
- + end_time.strftime("%H:%M:%S")
695
- )
696
-
697
- speed = st.slider("Frames per second:", 1, 30, 5)
698
- add_progress_bar = st.checkbox("Add a progress bar", True)
699
- progress_bar_color = st.color_picker(
700
- "Progress bar color:", "#0000ff"
701
- )
702
- font_size = st.slider("Font size:", 10, 50, 20)
703
- font_color = st.color_picker("Font color:", "#ffffff")
704
- fading = st.slider(
705
- "Fading duration (seconds) for each frame:", 0.0, 3.0, 0.0
706
- )
707
- mp4 = st.checkbox("Save timelapse as MP4", True)
708
-
709
- empty_text = st.empty()
710
- empty_image = st.empty()
711
- empty_video = st.container()
712
- empty_fire_text = st.empty()
713
- empty_fire_image = st.empty()
714
-
715
- submitted = st.form_submit_button("Submit")
716
- if submitted:
717
- if sample_roi == "Uploaded GeoJSON" and data is None:
718
- empty_text.warning(
719
- "Steps to create a timelapse: Draw a rectangle on the map -> Export it as a GeoJSON -> Upload it back to the app -> Click the Submit button. Alternatively, you can select a sample ROI from the dropdown list."
720
- )
721
- else:
722
- empty_text.text("Computing... Please wait...")
723
-
724
- geemap.goes_timelapse(
725
- out_gif,
726
- start_date=start,
727
- end_date=end,
728
- data=satellite,
729
- scan=scan_type.replace(" ", "_").lower(),
730
- region=roi,
731
- dimensions=768,
732
- framesPerSecond=speed,
733
- date_format="YYYY-MM-dd HH:mm",
734
- xy=("3%", "3%"),
735
- text_sequence=None,
736
- font_type="arial.ttf",
737
- font_size=font_size,
738
- font_color=font_color,
739
- add_progress_bar=add_progress_bar,
740
- progress_bar_color=progress_bar_color,
741
- progress_bar_height=5,
742
- loop=0,
743
- overlay_data=overlay_data,
744
- overlay_color=overlay_color,
745
- overlay_width=overlay_width,
746
- overlay_opacity=overlay_opacity,
747
- mp4=mp4,
748
- fading=fading,
749
- )
750
-
751
- if out_gif is not None and os.path.exists(out_gif):
752
- empty_text.text(
753
- "Right click the GIF to save it to your computerπŸ‘‡"
754
- )
755
- empty_image.image(out_gif)
756
-
757
- out_mp4 = out_gif.replace(".gif", ".mp4")
758
- if mp4 and os.path.exists(out_mp4):
759
- with empty_video:
760
- st.text(
761
- "Right click the MP4 to save it to your computerπŸ‘‡"
762
- )
763
- st.video(out_gif.replace(".gif", ".mp4"))
764
-
765
- if add_fire:
766
- out_fire_gif = geemap.temp_file_path(".gif")
767
- empty_fire_text.text(
768
- "Delineating Fire Hotspot... Please wait..."
769
- )
770
- geemap.goes_fire_timelapse(
771
- out_fire_gif,
772
- start_date=start,
773
- end_date=end,
774
- data=satellite,
775
- scan=scan_type.replace(" ", "_").lower(),
776
- region=roi,
777
- dimensions=768,
778
- framesPerSecond=speed,
779
- date_format="YYYY-MM-dd HH:mm",
780
- xy=("3%", "3%"),
781
- text_sequence=None,
782
- font_type="arial.ttf",
783
- font_size=font_size,
784
- font_color=font_color,
785
- add_progress_bar=add_progress_bar,
786
- progress_bar_color=progress_bar_color,
787
- progress_bar_height=5,
788
- loop=0,
789
- )
790
- if os.path.exists(out_fire_gif):
791
- empty_fire_image.image(out_fire_gif)
792
- else:
793
- empty_text.text(
794
- "Something went wrong, either the ROI is too big or there are no data available for the specified date range. Please try a smaller ROI or different date range."
795
- )
796
-
797
- elif collection == "MODIS Vegetation Indices (NDVI/EVI) 16-Day Global 1km":
798
-
799
- video_empty.video("https://youtu.be/16fA2QORG4A")
800
-
801
- satellite = st.selectbox("Select a satellite:", ["Terra", "Aqua"])
802
- band = st.selectbox("Select a band:", ["NDVI", "EVI"])
803
-
804
- with st.form("submit_modis_form"):
805
-
806
- roi = None
807
- if st.session_state.get("roi") is not None:
808
- roi = st.session_state.get("roi")
809
- out_gif = geemap.temp_file_path(".gif")
810
-
811
- with st.expander("Customize timelapse"):
812
-
813
- start = st.date_input(
814
- "Select a start date:", datetime.date(2000, 2, 8)
815
- )
816
- end = st.date_input("Select an end date:", datetime.date.today())
817
-
818
- start_date = start.strftime("%Y-%m-%d")
819
- end_date = end.strftime("%Y-%m-%d")
820
-
821
- speed = st.slider("Frames per second:", 1, 30, 5)
822
- add_progress_bar = st.checkbox("Add a progress bar", True)
823
- progress_bar_color = st.color_picker(
824
- "Progress bar color:", "#0000ff"
825
- )
826
- font_size = st.slider("Font size:", 10, 50, 20)
827
- font_color = st.color_picker("Font color:", "#ffffff")
828
-
829
- font_type = st.selectbox(
830
- "Select the font type for the title:",
831
- ["arial.ttf", "alibaba.otf"],
832
- index=0,
833
- )
834
- fading = st.slider(
835
- "Fading duration (seconds) for each frame:", 0.0, 3.0, 0.0
836
- )
837
- mp4 = st.checkbox("Save timelapse as MP4", True)
838
-
839
- empty_text = st.empty()
840
- empty_image = st.empty()
841
- empty_video = st.container()
842
-
843
- submitted = st.form_submit_button("Submit")
844
- if submitted:
845
- if sample_roi == "Uploaded GeoJSON" and data is None:
846
- empty_text.warning(
847
- "Steps to create a timelapse: Draw a rectangle on the map -> Export it as a GeoJSON -> Upload it back to the app -> Click the Submit button. Alternatively, you can select a sample ROI from the dropdown list."
848
- )
849
- else:
850
-
851
- empty_text.text("Computing... Please wait...")
852
-
853
- geemap.modis_ndvi_timelapse(
854
- out_gif,
855
- satellite,
856
- band,
857
- start_date,
858
- end_date,
859
- roi,
860
- 768,
861
- speed,
862
- overlay_data=overlay_data,
863
- overlay_color=overlay_color,
864
- overlay_width=overlay_width,
865
- overlay_opacity=overlay_opacity,
866
- mp4=mp4,
867
- fading=fading,
868
- )
869
-
870
- geemap.reduce_gif_size(out_gif)
871
-
872
- empty_text.text(
873
- "Right click the GIF to save it to your computerπŸ‘‡"
874
- )
875
- empty_image.image(out_gif)
876
-
877
- out_mp4 = out_gif.replace(".gif", ".mp4")
878
- if mp4 and os.path.exists(out_mp4):
879
- with empty_video:
880
- st.text(
881
- "Right click the MP4 to save it to your computerπŸ‘‡"
882
- )
883
- st.video(out_gif.replace(".gif", ".mp4"))
884
-
885
- elif collection == "Any Earth Engine ImageCollection":
886
-
887
- with st.form("submit_ts_form"):
888
- with st.expander("Customize timelapse"):
889
-
890
- title = st.text_input(
891
- "Enter a title to show on the timelapse: ", "Timelapse"
892
- )
893
- start_date = st.date_input(
894
- "Select the start date:", datetime.date(2020, 1, 1)
895
- )
896
- end_date = st.date_input(
897
- "Select the end date:", datetime.date.today()
898
- )
899
- frequency = st.selectbox(
900
- "Select a temporal frequency:",
901
- ["year", "quarter", "month", "day", "hour", "minute", "second"],
902
- index=0,
903
- )
904
- reducer = st.selectbox(
905
- "Select a reducer for aggregating data:",
906
- ["median", "mean", "min", "max", "sum", "variance", "stdDev"],
907
- index=0,
908
- )
909
- data_format = st.selectbox(
910
- "Select a date format to show on the timelapse:",
911
- [
912
- "YYYY-MM-dd",
913
- "YYYY",
914
- "YYMM-MM",
915
- "YYYY-MM-dd HH:mm",
916
- "YYYY-MM-dd HH:mm:ss",
917
- "HH:mm",
918
- "HH:mm:ss",
919
- "w",
920
- "M",
921
- "d",
922
- "D",
923
- ],
924
- index=0,
925
- )
926
-
927
- speed = st.slider("Frames per second:", 1, 30, 5)
928
- add_progress_bar = st.checkbox("Add a progress bar", True)
929
- progress_bar_color = st.color_picker(
930
- "Progress bar color:", "#0000ff"
931
- )
932
- font_size = st.slider("Font size:", 10, 50, 30)
933
- font_color = st.color_picker("Font color:", "#ffffff")
934
- font_type = st.selectbox(
935
- "Select the font type for the title:",
936
- ["arial.ttf", "alibaba.otf"],
937
- index=0,
938
- )
939
- fading = st.slider(
940
- "Fading duration (seconds) for each frame:", 0.0, 3.0, 0.0
941
- )
942
- mp4 = st.checkbox("Save timelapse as MP4", True)
943
-
944
- empty_text = st.empty()
945
- empty_image = st.empty()
946
- empty_video = st.container()
947
- empty_fire_image = st.empty()
948
-
949
- roi = None
950
- if st.session_state.get("roi") is not None:
951
- roi = st.session_state.get("roi")
952
- out_gif = geemap.temp_file_path(".gif")
953
-
954
- submitted = st.form_submit_button("Submit")
955
- if submitted:
956
-
957
- if sample_roi == "Uploaded GeoJSON" and data is None:
958
- empty_text.warning(
959
- "Steps to create a timelapse: Draw a rectangle on the map -> Export it as a GeoJSON -> Upload it back to the app -> Click the Submit button. Alternatively, you can select a sample ROI from the dropdown list."
960
- )
961
- else:
962
-
963
- empty_text.text("Computing... Please wait...")
964
- try:
965
- geemap.create_timelapse(
966
- st.session_state.get("ee_asset_id"),
967
- start_date=start_date.strftime("%Y-%m-%d"),
968
- end_date=end_date.strftime("%Y-%m-%d"),
969
- region=roi,
970
- frequency=frequency,
971
- reducer=reducer,
972
- date_format=data_format,
973
- out_gif=out_gif,
974
- bands=st.session_state.get("bands"),
975
- palette=st.session_state.get("palette"),
976
- vis_params=st.session_state.get("vis_params"),
977
- dimensions=768,
978
- frames_per_second=speed,
979
- crs="EPSG:3857",
980
- overlay_data=overlay_data,
981
- overlay_color=overlay_color,
982
- overlay_width=overlay_width,
983
- overlay_opacity=overlay_opacity,
984
- title=title,
985
- title_xy=("2%", "90%"),
986
- add_text=True,
987
- text_xy=("2%", "2%"),
988
- text_sequence=None,
989
- font_type=font_type,
990
- font_size=font_size,
991
- font_color=font_color,
992
- add_progress_bar=add_progress_bar,
993
- progress_bar_color=progress_bar_color,
994
- progress_bar_height=5,
995
- loop=0,
996
- mp4=mp4,
997
- fading=fading,
998
- )
999
- except:
1000
- empty_text.error(
1001
- "An error occurred while computing the timelapse. You probably requested too much data. Try reducing the ROI or timespan."
1002
- )
1003
-
1004
- empty_text.text(
1005
- "Right click the GIF to save it to your computerπŸ‘‡"
1006
- )
1007
- empty_image.image(out_gif)
1008
-
1009
- out_mp4 = out_gif.replace(".gif", ".mp4")
1010
- if mp4 and os.path.exists(out_mp4):
1011
- with empty_video:
1012
- st.text(
1013
- "Right click the MP4 to save it to your computerπŸ‘‡"
1014
- )
1015
- st.video(out_gif.replace(".gif", ".mp4"))
1016
-
1017
- elif collection in [
1018
- "MODIS Gap filled Land Surface Temperature Daily",
1019
- "MODIS Ocean Color SMI",
1020
- ]:
1021
-
1022
- with st.form("submit_ts_form"):
1023
- with st.expander("Customize timelapse"):
1024
-
1025
- title = st.text_input(
1026
- "Enter a title to show on the timelapse: ",
1027
- "Surface Temperature",
1028
- )
1029
- start_date = st.date_input(
1030
- "Select the start date:", datetime.date(2018, 1, 1)
1031
- )
1032
- end_date = st.date_input(
1033
- "Select the end date:", datetime.date(2020, 12, 31)
1034
- )
1035
- frequency = st.selectbox(
1036
- "Select a temporal frequency:",
1037
- ["year", "quarter", "month", "week", "day"],
1038
- index=2,
1039
- )
1040
- reducer = st.selectbox(
1041
- "Select a reducer for aggregating data:",
1042
- ["median", "mean", "min", "max", "sum", "variance", "stdDev"],
1043
- index=0,
1044
- )
1045
-
1046
- vis_params = st.text_area(
1047
- "Enter visualization parameters",
1048
- "",
1049
- help="Enter a string in the format of a dictionary, such as '{'min': 23, 'max': 32}'",
1050
- )
1051
-
1052
- speed = st.slider("Frames per second:", 1, 30, 5)
1053
- add_progress_bar = st.checkbox("Add a progress bar", True)
1054
- progress_bar_color = st.color_picker(
1055
- "Progress bar color:", "#0000ff"
1056
- )
1057
- font_size = st.slider("Font size:", 10, 50, 30)
1058
- font_color = st.color_picker("Font color:", "#ffffff")
1059
- font_type = st.selectbox(
1060
- "Select the font type for the title:",
1061
- ["arial.ttf", "alibaba.otf"],
1062
- index=0,
1063
- )
1064
- add_colorbar = st.checkbox("Add a colorbar", True)
1065
- colorbar_label = st.text_input(
1066
- "Enter the colorbar label:", "Surface Temperature (Β°C)"
1067
- )
1068
- fading = st.slider(
1069
- "Fading duration (seconds) for each frame:", 0.0, 3.0, 0.0
1070
- )
1071
- mp4 = st.checkbox("Save timelapse as MP4", True)
1072
-
1073
- empty_text = st.empty()
1074
- empty_image = st.empty()
1075
- empty_video = st.container()
1076
-
1077
- roi = None
1078
- if st.session_state.get("roi") is not None:
1079
- roi = st.session_state.get("roi")
1080
- out_gif = geemap.temp_file_path(".gif")
1081
-
1082
- submitted = st.form_submit_button("Submit")
1083
- if submitted:
1084
-
1085
- if sample_roi == "Uploaded GeoJSON" and data is None:
1086
- empty_text.warning(
1087
- "Steps to create a timelapse: Draw a rectangle on the map -> Export it as a GeoJSON -> Upload it back to the app -> Click the Submit button. Alternatively, you can select a sample ROI from the dropdown list."
1088
- )
1089
- else:
1090
-
1091
- empty_text.text("Computing... Please wait...")
1092
- try:
1093
- if (
1094
- collection
1095
- == "MODIS Gap filled Land Surface Temperature Daily"
1096
- ):
1097
- out_gif = geemap.create_timelapse(
1098
- st.session_state.get("ee_asset_id"),
1099
- start_date=start_date.strftime("%Y-%m-%d"),
1100
- end_date=end_date.strftime("%Y-%m-%d"),
1101
- region=roi,
1102
- bands=None,
1103
- frequency=frequency,
1104
- reducer=reducer,
1105
- date_format=None,
1106
- out_gif=out_gif,
1107
- palette=st.session_state.get("palette"),
1108
- vis_params=None,
1109
- dimensions=768,
1110
- frames_per_second=speed,
1111
- crs="EPSG:3857",
1112
- overlay_data=overlay_data,
1113
- overlay_color=overlay_color,
1114
- overlay_width=overlay_width,
1115
- overlay_opacity=overlay_opacity,
1116
- title=title,
1117
- title_xy=("2%", "90%"),
1118
- add_text=True,
1119
- text_xy=("2%", "2%"),
1120
- text_sequence=None,
1121
- font_type=font_type,
1122
- font_size=font_size,
1123
- font_color=font_color,
1124
- add_progress_bar=add_progress_bar,
1125
- progress_bar_color=progress_bar_color,
1126
- progress_bar_height=5,
1127
- add_colorbar=add_colorbar,
1128
- colorbar_label=colorbar_label,
1129
- loop=0,
1130
- mp4=mp4,
1131
- fading=fading,
1132
- )
1133
- elif collection == "MODIS Ocean Color SMI":
1134
- if vis_params.startswith("{") and vis_params.endswith(
1135
- "}"
1136
- ):
1137
- vis_params = eval(vis_params)
1138
- else:
1139
- vis_params = None
1140
- out_gif = geemap.modis_ocean_color_timelapse(
1141
- st.session_state.get("ee_asset_id"),
1142
- start_date=start_date.strftime("%Y-%m-%d"),
1143
- end_date=end_date.strftime("%Y-%m-%d"),
1144
- region=roi,
1145
- bands=st.session_state["band"],
1146
- frequency=frequency,
1147
- reducer=reducer,
1148
- date_format=None,
1149
- out_gif=out_gif,
1150
- palette=st.session_state.get("palette"),
1151
- vis_params=vis_params,
1152
- dimensions=768,
1153
- frames_per_second=speed,
1154
- crs="EPSG:3857",
1155
- overlay_data=overlay_data,
1156
- overlay_color=overlay_color,
1157
- overlay_width=overlay_width,
1158
- overlay_opacity=overlay_opacity,
1159
- title=title,
1160
- title_xy=("2%", "90%"),
1161
- add_text=True,
1162
- text_xy=("2%", "2%"),
1163
- text_sequence=None,
1164
- font_type=font_type,
1165
- font_size=font_size,
1166
- font_color=font_color,
1167
- add_progress_bar=add_progress_bar,
1168
- progress_bar_color=progress_bar_color,
1169
- progress_bar_height=5,
1170
- add_colorbar=add_colorbar,
1171
- colorbar_label=colorbar_label,
1172
- loop=0,
1173
- mp4=mp4,
1174
- fading=fading,
1175
- )
1176
- except:
1177
- empty_text.error(
1178
- "Something went wrong. You probably requested too much data. Try reducing the ROI or timespan."
1179
- )
1180
-
1181
- if out_gif is not None and os.path.exists(out_gif):
1182
-
1183
- geemap.reduce_gif_size(out_gif)
1184
-
1185
- empty_text.text(
1186
- "Right click the GIF to save it to your computerπŸ‘‡"
1187
- )
1188
- empty_image.image(out_gif)
1189
-
1190
- out_mp4 = out_gif.replace(".gif", ".mp4")
1191
- if mp4 and os.path.exists(out_mp4):
1192
- with empty_video:
1193
- st.text(
1194
- "Right click the MP4 to save it to your computerπŸ‘‡"
1195
- )
1196
- st.video(out_gif.replace(".gif", ".mp4"))
1197
-
1198
- else:
1199
- st.error(
1200
- "Something went wrong. You probably requested too much data. Try reducing the ROI or timespan."
1201
- )
1202
-
1203
- elif collection == "USDA National Agriculture Imagery Program (NAIP)":
1204
-
1205
- with st.form("submit_naip_form"):
1206
- with st.expander("Customize timelapse"):
1207
-
1208
- title = st.text_input(
1209
- "Enter a title to show on the timelapse: ", "NAIP Timelapse"
1210
- )
1211
-
1212
- years = st.slider(
1213
- "Start and end year:",
1214
- 2003,
1215
- today.year,
1216
- (2003, today.year),
1217
- )
1218
-
1219
- bands = st.selectbox(
1220
- "Select a band combination:", ["N/R/G", "R/G/B"], index=0
1221
- )
1222
-
1223
- speed = st.slider("Frames per second:", 1, 30, 3)
1224
- add_progress_bar = st.checkbox("Add a progress bar", True)
1225
- progress_bar_color = st.color_picker(
1226
- "Progress bar color:", "#0000ff"
1227
- )
1228
- font_size = st.slider("Font size:", 10, 50, 30)
1229
- font_color = st.color_picker("Font color:", "#ffffff")
1230
- font_type = st.selectbox(
1231
- "Select the font type for the title:",
1232
- ["arial.ttf", "alibaba.otf"],
1233
- index=0,
1234
- )
1235
- fading = st.slider(
1236
- "Fading duration (seconds) for each frame:", 0.0, 3.0, 0.0
1237
- )
1238
- mp4 = st.checkbox("Save timelapse as MP4", True)
1239
-
1240
- empty_text = st.empty()
1241
- empty_image = st.empty()
1242
- empty_video = st.container()
1243
- empty_fire_image = st.empty()
1244
-
1245
- roi = None
1246
- if st.session_state.get("roi") is not None:
1247
- roi = st.session_state.get("roi")
1248
- out_gif = geemap.temp_file_path(".gif")
1249
-
1250
- submitted = st.form_submit_button("Submit")
1251
- if submitted:
1252
-
1253
- if sample_roi == "Uploaded GeoJSON" and data is None:
1254
- empty_text.warning(
1255
- "Steps to create a timelapse: Draw a rectangle on the map -> Export it as a GeoJSON -> Upload it back to the app -> Click the Submit button. Alternatively, you can select a sample ROI from the dropdown list."
1256
- )
1257
- else:
1258
-
1259
- empty_text.text("Computing... Please wait...")
1260
- try:
1261
- geemap.naip_timelapse(
1262
- roi,
1263
- years[0],
1264
- years[1],
1265
- out_gif,
1266
- bands=bands.split("/"),
1267
- palette=st.session_state.get("palette"),
1268
- vis_params=None,
1269
- dimensions=768,
1270
- frames_per_second=speed,
1271
- crs="EPSG:3857",
1272
- overlay_data=overlay_data,
1273
- overlay_color=overlay_color,
1274
- overlay_width=overlay_width,
1275
- overlay_opacity=overlay_opacity,
1276
- title=title,
1277
- title_xy=("2%", "90%"),
1278
- add_text=True,
1279
- text_xy=("2%", "2%"),
1280
- text_sequence=None,
1281
- font_type=font_type,
1282
- font_size=font_size,
1283
- font_color=font_color,
1284
- add_progress_bar=add_progress_bar,
1285
- progress_bar_color=progress_bar_color,
1286
- progress_bar_height=5,
1287
- loop=0,
1288
- mp4=mp4,
1289
- fading=fading,
1290
- )
1291
- except:
1292
- empty_text.error(
1293
- "Something went wrong. You either requested too much data or the ROI is outside the U.S."
1294
- )
1295
-
1296
- if out_gif is not None and os.path.exists(out_gif):
1297
-
1298
- empty_text.text(
1299
- "Right click the GIF to save it to your computerπŸ‘‡"
1300
- )
1301
- empty_image.image(out_gif)
1302
-
1303
- out_mp4 = out_gif.replace(".gif", ".mp4")
1304
- if mp4 and os.path.exists(out_mp4):
1305
- with empty_video:
1306
- st.text(
1307
- "Right click the MP4 to save it to your computerπŸ‘‡"
1308
- )
1309
- st.video(out_gif.replace(".gif", ".mp4"))
1310
-
1311
- else:
1312
- st.error(
1313
- "Something went wrong. You either requested too much data or the ROI is outside the U.S."
1314
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
apps/vector.py DELETED
@@ -1,98 +0,0 @@
1
- import os
2
- import fiona
3
- import geopandas as gpd
4
- import streamlit as st
5
-
6
-
7
- def save_uploaded_file(file_content, file_name):
8
- """
9
- Save the uploaded file to a temporary directory
10
- """
11
- import tempfile
12
- import os
13
- import uuid
14
-
15
- _, file_extension = os.path.splitext(file_name)
16
- file_id = str(uuid.uuid4())
17
- file_path = os.path.join(tempfile.gettempdir(), f"{file_id}{file_extension}")
18
-
19
- with open(file_path, "wb") as file:
20
- file.write(file_content.getbuffer())
21
-
22
- return file_path
23
-
24
-
25
- def app():
26
-
27
- st.title("Upload Vector Data")
28
-
29
- row1_col1, row1_col2 = st.columns([2, 1])
30
- width = 950
31
- height = 600
32
-
33
- with row1_col2:
34
-
35
- backend = st.selectbox(
36
- "Select a plotting backend", ["folium", "kepler.gl", "pydeck"], index=2
37
- )
38
-
39
- if backend == "folium":
40
- import leafmap.foliumap as leafmap
41
- elif backend == "kepler.gl":
42
- import leafmap.kepler as leafmap
43
- elif backend == "pydeck":
44
- import leafmap.deck as leafmap
45
-
46
- url = st.text_input(
47
- "Enter a URL to a vector dataset",
48
- "https://github.com/giswqs/streamlit-geospatial/raw/master/data/us_states.geojson",
49
- )
50
-
51
- data = st.file_uploader(
52
- "Upload a vector dataset", type=["geojson", "kml", "zip", "tab"]
53
- )
54
-
55
- container = st.container()
56
-
57
- if data or url:
58
- if data:
59
- file_path = save_uploaded_file(data, data.name)
60
- layer_name = os.path.splitext(data.name)[0]
61
- elif url:
62
- file_path = url
63
- layer_name = url.split("/")[-1].split(".")[0]
64
-
65
- with row1_col1:
66
- if file_path.lower().endswith(".kml"):
67
- fiona.drvsupport.supported_drivers["KML"] = "rw"
68
- gdf = gpd.read_file(file_path, driver="KML")
69
- else:
70
- gdf = gpd.read_file(file_path)
71
- lon, lat = leafmap.gdf_centroid(gdf)
72
- if backend == "pydeck":
73
-
74
- column_names = gdf.columns.values.tolist()
75
- random_column = None
76
- with container:
77
- random_color = st.checkbox("Apply random colors", True)
78
- if random_color:
79
- random_column = st.selectbox(
80
- "Select a column to apply random colors", column_names
81
- )
82
-
83
- m = leafmap.Map(center=(lat, lon))
84
- m.add_gdf(gdf, random_color_column=random_column)
85
- st.pydeck_chart(m)
86
-
87
- else:
88
- m = leafmap.Map(center=(lat, lon), draw_export=True)
89
- m.add_gdf(gdf, layer_name=layer_name)
90
- # m.add_vector(file_path, layer_name=layer_name)
91
- if backend == "folium":
92
- m.zoom_to_gdf(gdf)
93
- m.to_streamlit(width=width, height=height)
94
-
95
- else:
96
- with row1_col1:
97
- m = leafmap.Map()
98
- st.pydeck_chart(m)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
apps/wms.py DELETED
@@ -1,68 +0,0 @@
1
- import ast
2
- import streamlit as st
3
- import leafmap.foliumap as leafmap
4
-
5
-
6
- @st.cache(allow_output_mutation=True)
7
- def get_layers(url):
8
- options = leafmap.get_wms_layers(url)
9
- return options
10
-
11
-
12
- def app():
13
- st.title("Add Web Map Service (WMS)")
14
- st.markdown(
15
- """
16
- This app is a demonstration of loading Web Map Service (WMS) layers. Simply enter the URL of the WMS service
17
- in the text box below and press Enter to retrieve the layers. Go to https://apps.nationalmap.gov/services to find
18
- some WMS URLs if needed.
19
- """
20
- )
21
-
22
- row1_col1, row1_col2 = st.columns([3, 1.3])
23
- width = 800
24
- height = 600
25
- layers = None
26
-
27
- with row1_col2:
28
-
29
- esa_landcover = "https://services.terrascope.be/wms/v2"
30
- url = st.text_input(
31
- "Enter a WMS URL:", value="https://services.terrascope.be/wms/v2"
32
- )
33
- empty = st.empty()
34
-
35
- if url:
36
- options = get_layers(url)
37
-
38
- default = None
39
- if url == esa_landcover:
40
- default = "WORLDCOVER_2020_MAP"
41
- layers = empty.multiselect(
42
- "Select WMS layers to add to the map:", options, default=default
43
- )
44
- add_legend = st.checkbox("Add a legend to the map", value=True)
45
- if default == "WORLDCOVER_2020_MAP":
46
- legend = str(leafmap.builtin_legends["ESA_WorldCover"])
47
- else:
48
- legend = ""
49
- if add_legend:
50
- legend_text = st.text_area(
51
- "Enter a legend as a dictionary {label: color}",
52
- value=legend,
53
- height=200,
54
- )
55
-
56
- with row1_col1:
57
- m = leafmap.Map(center=(36.3, 0), zoom=2)
58
-
59
- if layers is not None:
60
- for layer in layers:
61
- m.add_wms_layer(
62
- url, layers=layer, name=layer, attribution=" ", transparent=True
63
- )
64
- if add_legend and legend_text:
65
- legend_dict = ast.literal_eval(legend_text)
66
- m.add_legend(legend_dict=legend_dict)
67
-
68
- m.to_streamlit(width, height)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
apps/xy.py DELETED
@@ -1,65 +0,0 @@
1
- import leafmap.foliumap as leafmap
2
- import pandas as pd
3
- import streamlit as st
4
-
5
-
6
- def app():
7
-
8
- st.title("Add Points from XY")
9
-
10
- sample_url = "https://raw.githubusercontent.com/giswqs/leafmap/master/examples/data/world_cities.csv"
11
- url = st.text_input("Enter URL:", sample_url)
12
- m = leafmap.Map(locate_control=True, plugin_LatLngPopup=False)
13
-
14
- if url:
15
-
16
- try:
17
- df = pd.read_csv(url)
18
-
19
- columns = df.columns.values.tolist()
20
- row1_col1, row1_col2, row1_col3, row1_col4, row1_col5 = st.columns(
21
- [1, 1, 3, 1, 1]
22
- )
23
-
24
- lon_index = 0
25
- lat_index = 0
26
-
27
- for col in columns:
28
- if col.lower() in ["lon", "longitude", "long", "lng"]:
29
- lon_index = columns.index(col)
30
- elif col.lower() in ["lat", "latitude"]:
31
- lat_index = columns.index(col)
32
-
33
- with row1_col1:
34
- x = st.selectbox("Select longitude column", columns, lon_index)
35
-
36
- with row1_col2:
37
- y = st.selectbox("Select latitude column", columns, lat_index)
38
-
39
- with row1_col3:
40
- popups = st.multiselect("Select popup columns", columns, columns)
41
-
42
- with row1_col4:
43
- heatmap = st.checkbox("Add heatmap")
44
-
45
- if heatmap:
46
- with row1_col5:
47
- if "pop_max" in columns:
48
- index = columns.index("pop_max")
49
- else:
50
- index = 0
51
- heatmap_col = st.selectbox("Select heatmap column", columns, index)
52
- try:
53
- m.add_heatmap(df, y, x, heatmap_col)
54
- except:
55
- st.error("Please select a numeric column")
56
-
57
- try:
58
- m.add_points_from_xy(df, x, y, popups)
59
- except:
60
- st.error("Please select a numeric column")
61
-
62
- except Exception as e:
63
- st.error(e)
64
-
65
- m.to_streamlit()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
pages/13_🏘️_Global_Building_Footprints.py CHANGED
@@ -30,25 +30,26 @@ st.title("Global Building Footprints")
30
  col1, col2 = st.columns([8, 2])
31
 
32
 
33
- @st.cache(allow_output_mutation=True)
34
  def read_data(url):
35
  return gpd.read_file(url)
36
 
37
 
38
- countries = 'https://github.com/giswqs/geemap/raw/master/examples/data/countries.geojson'
39
- states = 'https://github.com/giswqs/geemap/raw/master/examples/data/us_states.json'
 
 
40
 
41
  countries_gdf = read_data(countries)
42
  states_gdf = read_data(states)
43
 
44
- country_names = countries_gdf['NAME'].values.tolist()
45
- country_names.remove('United States of America')
46
- country_names.append('USA')
47
  country_names.sort()
48
- country_names = [name.replace('.', '').replace(' ', '_')
49
- for name in country_names]
50
 
51
- state_names = states_gdf['name'].values.tolist()
52
 
53
  basemaps = list(geemap.basemaps)
54
 
@@ -56,41 +57,44 @@ Map = geemap.Map()
56
 
57
  with col2:
58
 
59
- basemap = st.selectbox("Select a basemap", basemaps,
60
- index=basemaps.index('HYBRID'))
61
  Map.add_basemap(basemap)
62
 
63
- country = st.selectbox('Select a country', country_names,
64
- index=country_names.index('USA'))
 
65
 
66
- if country == 'USA':
67
- state = st.selectbox('Select a state', state_names,
68
- index=state_names.index('Florida'))
 
69
  layer_name = state
70
 
71
  try:
72
  fc = ee.FeatureCollection(
73
- f'projects/sat-io/open-datasets/MSBuildings/US/{state}')
 
74
  except:
75
- st.error('No data available for the selected state.')
76
 
77
  else:
78
  try:
79
  fc = ee.FeatureCollection(
80
- f'projects/sat-io/open-datasets/MSBuildings/{country}')
 
81
  except:
82
- st.error('No data available for the selected country.')
83
 
84
  layer_name = country
85
 
86
- color = st.color_picker('Select a color', '#FF5500')
87
 
88
- style = {'fillColor': '00000000', 'color': color}
89
 
90
  split = st.checkbox("Split-panel map")
91
 
92
  if split:
93
- left = geemap.ee_tile_layer(fc.style(**style), {}, 'Left')
94
  right = left
95
  Map.split_map(left, right)
96
  else:
 
30
  col1, col2 = st.columns([8, 2])
31
 
32
 
33
+ @st.cache_data
34
  def read_data(url):
35
  return gpd.read_file(url)
36
 
37
 
38
+ countries = (
39
+ "https://github.com/giswqs/geemap/raw/master/examples/data/countries.geojson"
40
+ )
41
+ states = "https://github.com/giswqs/geemap/raw/master/examples/data/us_states.json"
42
 
43
  countries_gdf = read_data(countries)
44
  states_gdf = read_data(states)
45
 
46
+ country_names = countries_gdf["NAME"].values.tolist()
47
+ country_names.remove("United States of America")
48
+ country_names.append("USA")
49
  country_names.sort()
50
+ country_names = [name.replace(".", "").replace(" ", "_") for name in country_names]
 
51
 
52
+ state_names = states_gdf["name"].values.tolist()
53
 
54
  basemaps = list(geemap.basemaps)
55
 
 
57
 
58
  with col2:
59
 
60
+ basemap = st.selectbox("Select a basemap", basemaps, index=basemaps.index("HYBRID"))
 
61
  Map.add_basemap(basemap)
62
 
63
+ country = st.selectbox(
64
+ "Select a country", country_names, index=country_names.index("USA")
65
+ )
66
 
67
+ if country == "USA":
68
+ state = st.selectbox(
69
+ "Select a state", state_names, index=state_names.index("Florida")
70
+ )
71
  layer_name = state
72
 
73
  try:
74
  fc = ee.FeatureCollection(
75
+ f"projects/sat-io/open-datasets/MSBuildings/US/{state}"
76
+ )
77
  except:
78
+ st.error("No data available for the selected state.")
79
 
80
  else:
81
  try:
82
  fc = ee.FeatureCollection(
83
+ f"projects/sat-io/open-datasets/MSBuildings/{country}"
84
+ )
85
  except:
86
+ st.error("No data available for the selected country.")
87
 
88
  layer_name = country
89
 
90
+ color = st.color_picker("Select a color", "#FF5500")
91
 
92
+ style = {"fillColor": "00000000", "color": color}
93
 
94
  split = st.checkbox("Split-panel map")
95
 
96
  if split:
97
+ left = geemap.ee_tile_layer(fc.style(**style), {}, "Left")
98
  right = left
99
  Map.split_map(left, right)
100
  else:
pages/1_πŸ“·_Timelapse.py CHANGED
@@ -15,7 +15,7 @@ st.set_page_config(layout="wide")
15
  warnings.filterwarnings("ignore")
16
 
17
 
18
- @st.cache(allow_output_mutation=True)
19
  def ee_authenticate(token_name="EARTHENGINE_TOKEN"):
20
  geemap.ee_initialize(token_name=token_name)
21
 
@@ -205,7 +205,7 @@ ocean_rois = {
205
  }
206
 
207
 
208
- @st.cache(allow_output_mutation=True)
209
  def uploaded_file_to_gdf(data):
210
  import tempfile
211
  import os
@@ -412,13 +412,13 @@ def app():
412
  MODIS_options = ["Daytime (1:30 pm)", "Nighttime (1:30 am)"]
413
  MODIS_option = st.selectbox("Select a MODIS dataset:", MODIS_options)
414
  if MODIS_option == "Daytime (1:30 pm)":
415
- st.session_state[
416
- "ee_asset_id"
417
- ] = "projects/sat-io/open-datasets/gap-filled-lst/gf_day_1km"
418
  else:
419
- st.session_state[
420
- "ee_asset_id"
421
- ] = "projects/sat-io/open-datasets/gap-filled-lst/gf_night_1km"
422
 
423
  palette_options = st.selectbox(
424
  "Color palette",
 
15
  warnings.filterwarnings("ignore")
16
 
17
 
18
+ @st.cache_data
19
  def ee_authenticate(token_name="EARTHENGINE_TOKEN"):
20
  geemap.ee_initialize(token_name=token_name)
21
 
 
205
  }
206
 
207
 
208
+ @st.cache_data
209
  def uploaded_file_to_gdf(data):
210
  import tempfile
211
  import os
 
412
  MODIS_options = ["Daytime (1:30 pm)", "Nighttime (1:30 am)"]
413
  MODIS_option = st.selectbox("Select a MODIS dataset:", MODIS_options)
414
  if MODIS_option == "Daytime (1:30 pm)":
415
+ st.session_state["ee_asset_id"] = (
416
+ "projects/sat-io/open-datasets/gap-filled-lst/gf_day_1km"
417
+ )
418
  else:
419
+ st.session_state["ee_asset_id"] = (
420
+ "projects/sat-io/open-datasets/gap-filled-lst/gf_night_1km"
421
+ )
422
 
423
  palette_options = st.selectbox(
424
  "Color palette",
pages/2_🏠_U.S._Housing.py CHANGED
@@ -95,7 +95,7 @@ def get_data_columns(df, category, frequency="monthly"):
95
  return cols[1:]
96
 
97
 
98
- @st.cache(allow_output_mutation=True)
99
  def get_inventory_data(url):
100
  df = pd.read_csv(url)
101
  url = url.lower()
@@ -139,7 +139,7 @@ def get_periods(df):
139
  return [str(d) for d in list(set(df["month_date_yyyymm"].tolist()))]
140
 
141
 
142
- @st.cache(allow_output_mutation=True)
143
  def get_geom_data(category):
144
 
145
  prefix = (
 
95
  return cols[1:]
96
 
97
 
98
+ @st.cache_data
99
  def get_inventory_data(url):
100
  df = pd.read_csv(url)
101
  url = url.lower()
 
139
  return [str(d) for d in list(set(df["month_date_yyyymm"].tolist()))]
140
 
141
 
142
+ @st.cache_data
143
  def get_geom_data(category):
144
 
145
  prefix = (
pages/4_πŸ”₯_Heatmap.py CHANGED
@@ -22,7 +22,7 @@ st.title("Heatmap")
22
  with st.expander("See source code"):
23
  with st.echo():
24
  filepath = "https://raw.githubusercontent.com/giswqs/leafmap/master/examples/data/us_cities.csv"
25
- m = leafmap.Map(center=[40, -100], zoom=4, tiles="stamentoner")
26
  m.add_heatmap(
27
  filepath,
28
  latitude="latitude",
 
22
  with st.expander("See source code"):
23
  with st.echo():
24
  filepath = "https://raw.githubusercontent.com/giswqs/leafmap/master/examples/data/us_cities.csv"
25
+ m = leafmap.Map(center=[40, -100], zoom=4)
26
  m.add_heatmap(
27
  filepath,
28
  latitude="latitude",
pages/6_πŸ—ΊοΈ_Basemaps.py CHANGED
@@ -47,15 +47,18 @@ def app():
47
  if qms is not None:
48
  options = options + qms
49
 
50
- tiles = empty.multiselect(
51
- "Select XYZ tiles to add to the map:", options)
52
 
53
  with row1_col1:
54
  m = leafmap.Map()
55
 
56
  if tiles is not None:
57
  for tile in tiles:
58
- m.add_xyz_service(tile)
 
 
 
 
59
 
60
  m.to_streamlit(height=height)
61
 
 
47
  if qms is not None:
48
  options = options + qms
49
 
50
+ tiles = empty.multiselect("Select XYZ tiles to add to the map:", options)
 
51
 
52
  with row1_col1:
53
  m = leafmap.Map()
54
 
55
  if tiles is not None:
56
  for tile in tiles:
57
+ try:
58
+ m.add_xyz_service(tile)
59
+ except Exception as e:
60
+ with row1_col2:
61
+ st.error(e)
62
 
63
  m.to_streamlit(height=height)
64
 
pages/7_πŸ“¦_Web_Map_Service.py CHANGED
@@ -19,7 +19,7 @@ st.sidebar.info(
19
  )
20
 
21
 
22
- @st.cache(allow_output_mutation=True)
23
  def get_layers(url):
24
  options = leafmap.get_wms_layers(url)
25
  return options
 
19
  )
20
 
21
 
22
+ @st.cache_data
23
  def get_layers(url):
24
  options = leafmap.get_wms_layers(url)
25
  return options
pages/8_🏜️_Raster_Data_Visualization.py CHANGED
@@ -20,7 +20,7 @@ st.sidebar.info(
20
  )
21
 
22
 
23
- @st.cache(allow_output_mutation=True)
24
  def load_cog_list():
25
  print(os.getcwd())
26
  in_txt = os.path.join(os.getcwd(), "data/cog_files.txt")
@@ -28,7 +28,7 @@ def load_cog_list():
28
  return [line.strip() for line in f.readlines()[1:]]
29
 
30
 
31
- @st.cache(allow_output_mutation=True)
32
  def get_palettes():
33
  return list(cm.palettes.keys())
34
  # palettes = dir(palettable.matplotlib)[:-16]
 
20
  )
21
 
22
 
23
+ @st.cache_data
24
  def load_cog_list():
25
  print(os.getcwd())
26
  in_txt = os.path.join(os.getcwd(), "data/cog_files.txt")
 
28
  return [line.strip() for line in f.readlines()[1:]]
29
 
30
 
31
+ @st.cache_data
32
  def get_palettes():
33
  return list(cm.palettes.keys())
34
  # palettes = dir(palettable.matplotlib)[:-16]