Spaces:
Sleeping
Sleeping
ZeroCommand
commited on
Commit
·
6eb5802
1
Parent(s):
d0be156
handle hf api response with custom class
Browse files- text_classification.py +11 -8
- text_classification_ui_helpers.py +5 -5
text_classification.py
CHANGED
@@ -7,13 +7,16 @@ import pandas as pd
|
|
7 |
from transformers import pipeline
|
8 |
import requests
|
9 |
import os
|
10 |
-
import time
|
11 |
|
12 |
logger = logging.getLogger(__name__)
|
13 |
HF_WRITE_TOKEN = "HF_WRITE_TOKEN"
|
14 |
|
15 |
logger = logging.getLogger(__file__)
|
16 |
|
|
|
|
|
|
|
|
|
17 |
|
18 |
def get_labels_and_features_from_dataset(ds):
|
19 |
try:
|
@@ -286,13 +289,12 @@ def get_example_prediction(model_id, dataset_id, dataset_config, dataset_split):
|
|
286 |
payload = {"inputs": prediction_input, "options": {"use_cache": True}}
|
287 |
results = hf_inference_api(model_id, hf_token, payload)
|
288 |
|
289 |
-
if isinstance(results, dict) and "estimated_time" in results.keys():
|
290 |
-
# return the estimated time for the inference api to load
|
291 |
-
# cast the float to int to be concise
|
292 |
-
return prediction_input, str(f"{int(results['estimated_time'])}s")
|
293 |
-
|
294 |
if isinstance(results, dict) and "error" in results.keys():
|
295 |
-
|
|
|
|
|
|
|
|
|
296 |
|
297 |
while isinstance(results, list):
|
298 |
if isinstance(results[0], dict):
|
@@ -303,7 +305,8 @@ def get_example_prediction(model_id, dataset_id, dataset_config, dataset_split):
|
|
303 |
}
|
304 |
except Exception as e:
|
305 |
# inference api prediction failed, show the error message
|
306 |
-
|
|
|
307 |
|
308 |
return prediction_input, prediction_result
|
309 |
|
|
|
7 |
from transformers import pipeline
|
8 |
import requests
|
9 |
import os
|
|
|
10 |
|
11 |
logger = logging.getLogger(__name__)
|
12 |
HF_WRITE_TOKEN = "HF_WRITE_TOKEN"
|
13 |
|
14 |
logger = logging.getLogger(__file__)
|
15 |
|
16 |
+
class HuggingFaceInferenceAPIResponse:
|
17 |
+
def __init__(self, message):
|
18 |
+
self.message = message
|
19 |
+
|
20 |
|
21 |
def get_labels_and_features_from_dataset(ds):
|
22 |
try:
|
|
|
289 |
payload = {"inputs": prediction_input, "options": {"use_cache": True}}
|
290 |
results = hf_inference_api(model_id, hf_token, payload)
|
291 |
|
|
|
|
|
|
|
|
|
|
|
292 |
if isinstance(results, dict) and "error" in results.keys():
|
293 |
+
if "estimated_time" in results.keys():
|
294 |
+
return prediction_input, HuggingFaceInferenceAPIResponse(
|
295 |
+
f"Estimated time: {int(results['estimated_time'])}s. Please try again later.")
|
296 |
+
return prediction_input, HuggingFaceInferenceAPIResponse(
|
297 |
+
f"Inference Error: {results['error']}.")
|
298 |
|
299 |
while isinstance(results, list):
|
300 |
if isinstance(results[0], dict):
|
|
|
305 |
}
|
306 |
except Exception as e:
|
307 |
# inference api prediction failed, show the error message
|
308 |
+
logger.error(f"Get example prediction failed {e}")
|
309 |
+
return prediction_input, None
|
310 |
|
311 |
return prediction_input, prediction_result
|
312 |
|
text_classification_ui_helpers.py
CHANGED
@@ -15,6 +15,7 @@ from text_classification import (
|
|
15 |
preload_hf_inference_api,
|
16 |
get_example_prediction,
|
17 |
get_labels_and_features_from_dataset,
|
|
|
18 |
)
|
19 |
from wordings import (
|
20 |
CHECK_CONFIG_OR_SPLIT_RAW,
|
@@ -213,24 +214,23 @@ def align_columns_and_show_prediction(
|
|
213 |
model_id, dataset_id, dataset_config, dataset_split
|
214 |
)
|
215 |
|
216 |
-
if
|
217 |
return (
|
218 |
gr.update(visible=False),
|
219 |
gr.update(visible=False),
|
220 |
gr.update(visible=False, open=False),
|
221 |
gr.update(interactive=False),
|
222 |
-
|
223 |
*dropdown_placement,
|
224 |
)
|
225 |
|
226 |
-
if isinstance(prediction_response,
|
227 |
-
gr.Warning(f"Inference API loading error: {prediction_response}. Please check your model or Hugging Face token.")
|
228 |
return (
|
229 |
gr.update(visible=False),
|
230 |
gr.update(visible=False),
|
231 |
gr.update(visible=False, open=False),
|
232 |
gr.update(interactive=False),
|
233 |
-
"",
|
234 |
*dropdown_placement,
|
235 |
)
|
236 |
|
|
|
15 |
preload_hf_inference_api,
|
16 |
get_example_prediction,
|
17 |
get_labels_and_features_from_dataset,
|
18 |
+
HuggingFaceInferenceAPIResponse,
|
19 |
)
|
20 |
from wordings import (
|
21 |
CHECK_CONFIG_OR_SPLIT_RAW,
|
|
|
214 |
model_id, dataset_id, dataset_config, dataset_split
|
215 |
)
|
216 |
|
217 |
+
if prediction_input is None or prediction_response is None:
|
218 |
return (
|
219 |
gr.update(visible=False),
|
220 |
gr.update(visible=False),
|
221 |
gr.update(visible=False, open=False),
|
222 |
gr.update(interactive=False),
|
223 |
+
"",
|
224 |
*dropdown_placement,
|
225 |
)
|
226 |
|
227 |
+
if isinstance(prediction_response, HuggingFaceInferenceAPIResponse):
|
|
|
228 |
return (
|
229 |
gr.update(visible=False),
|
230 |
gr.update(visible=False),
|
231 |
gr.update(visible=False, open=False),
|
232 |
gr.update(interactive=False),
|
233 |
+
f"Hugging Face Inference API is loading your model. {prediction_response.message}",
|
234 |
*dropdown_placement,
|
235 |
)
|
236 |
|