Spaces:
Sleeping
Sleeping
import os | |
import logging | |
import yaml | |
YAML_PATH = "./cicd/configs" | |
LOG_FILE = "temp_log" | |
logger = logging.getLogger(__name__) | |
class Dumper(yaml.Dumper): | |
def increase_indent(self, flow=False, *args, **kwargs): | |
return super().increase_indent(flow=flow, indentless=False) | |
def get_submitted_yaml_path(uid): | |
if not os.path.exists(f"{YAML_PATH}/submitted"): | |
os.makedirs(f"{YAML_PATH}/submitted") | |
if not os.path.exists(f"{YAML_PATH}/{uid}_config.yaml"): | |
logger.error(f"config.yaml does not exist for {uid}") | |
os.system(f"cp config.yaml {YAML_PATH}/{uid}_config.yaml") | |
if not os.path.exists(f"{YAML_PATH}/submitted/{uid}_config.yaml"): | |
os.system(f"cp {YAML_PATH}/{uid}_config.yaml {YAML_PATH}/submitted/{uid}_config.yaml") | |
return f"{YAML_PATH}/submitted/{uid}_config.yaml" | |
def get_yaml_path(uid): | |
if not os.path.exists(YAML_PATH): | |
os.makedirs(YAML_PATH) | |
if not os.path.exists(f"{YAML_PATH}/{uid}_config.yaml"): | |
os.system(f"cp config.yaml {YAML_PATH}/{uid}_config.yaml") | |
return f"{YAML_PATH}/{uid}_config.yaml" | |
# read scanners from yaml file | |
# return a list of scanners | |
def read_scanners(uid): | |
scanners = [] | |
with open(get_yaml_path(uid), "r") as f: | |
config = yaml.load(f, Loader=yaml.FullLoader) | |
scanners = config.get("detectors", []) | |
return scanners | |
# convert a list of scanners to yaml file | |
def write_scanners(scanners, uid): | |
with open(get_yaml_path(uid), "r") as f: | |
config = yaml.load(f, Loader=yaml.FullLoader) | |
if config: | |
config["detectors"] = scanners | |
# save scanners to detectors in yaml | |
with open(get_yaml_path(uid), "w") as f: | |
yaml.dump(config, f, Dumper=Dumper) | |
# read model_type from yaml file | |
def read_inference_type(uid): | |
inference_type = "" | |
with open(get_yaml_path(uid), "r") as f: | |
config = yaml.load(f, Loader=yaml.FullLoader) | |
inference_type = config.get("inference_type", "") | |
return inference_type | |
# write model_type to yaml file | |
def write_inference_type(use_inference, inference_token, uid): | |
with open(get_yaml_path(uid), "r") as f: | |
config = yaml.load(f, Loader=yaml.FullLoader) | |
if use_inference: | |
config["inference_type"] = "hf_inference_api" | |
config["inference_token"] = inference_token | |
else: | |
config["inference_type"] = "hf_pipeline" | |
# FIXME: A quick and temp fix for missing token | |
config["inference_token"] = "" | |
# save inference_type to inference_type in yaml | |
with open(get_yaml_path(uid), "w") as f: | |
yaml.dump(config, f, Dumper=Dumper) | |
# read column mapping from yaml file | |
def read_column_mapping(uid): | |
column_mapping = {} | |
with open(get_yaml_path(uid), "r") as f: | |
config = yaml.load(f, Loader=yaml.FullLoader) | |
if config: | |
column_mapping = config.get("column_mapping", dict()) | |
if column_mapping is None: | |
column_mapping = {} | |
return column_mapping | |
# write column mapping to yaml file | |
def write_column_mapping(mapping, uid): | |
with open(get_yaml_path(uid), "r") as f: | |
config = yaml.load(f, Loader=yaml.FullLoader) | |
if config is None: | |
return | |
if mapping is None and "column_mapping" in config.keys(): | |
del config["column_mapping"] | |
else: | |
config["column_mapping"] = mapping | |
with open(get_yaml_path(uid), "w") as f: | |
# yaml Dumper will by default sort the keys | |
yaml.dump(config, f, Dumper=Dumper, sort_keys=False) | |
# convert column mapping dataframe to json | |
def convert_column_mapping_to_json(df, label=""): | |
column_mapping = {} | |
column_mapping[label] = [] | |
for _, row in df.iterrows(): | |
column_mapping[label].append(row.tolist()) | |
return column_mapping | |
def get_log_file_with_uid(uid): | |
try: | |
print(f"Loading {uid}.log") | |
with open(f"./tmp/{uid}.log", "a") as file: | |
return file.read() | |
except Exception: | |
return "Log file does not exist" | |
def get_logs_file(): | |
try: | |
with open(LOG_FILE, "r") as file: | |
return file.read() | |
except Exception: | |
return "Log file does not exist" | |
def write_log_to_user_file(task_id, log): | |
with open(f"./tmp/{task_id}.log", "a") as f: | |
f.write(log) | |