Spaces:
Running
Running
import gradio as gr | |
import datasets | |
import huggingface_hub | |
import os | |
import time | |
import subprocess | |
import logging | |
import json | |
from transformers.pipelines import TextClassificationPipeline | |
from text_classification import text_classification_fix_column_mapping | |
HF_REPO_ID = 'HF_REPO_ID' | |
HF_SPACE_ID = 'SPACE_ID' | |
HF_WRITE_TOKEN = 'HF_WRITE_TOKEN' | |
theme = gr.themes.Soft( | |
primary_hue="green", | |
) | |
def check_model(model_id): | |
try: | |
task = huggingface_hub.model_info(model_id).pipeline_tag | |
except Exception: | |
return None, None | |
try: | |
from transformers import pipeline | |
ppl = pipeline(task=task, model=model_id) | |
return model_id, ppl | |
except Exception as e: | |
return model_id, e | |
def check_dataset(dataset_id, dataset_config="default", dataset_split="test"): | |
try: | |
configs = datasets.get_dataset_config_names(dataset_id) | |
except Exception: | |
# Dataset may not exist | |
return None, dataset_config, dataset_split | |
if dataset_config not in configs: | |
# Need to choose dataset subset (config) | |
return dataset_id, configs, dataset_split | |
ds = datasets.load_dataset(dataset_id, dataset_config) | |
if isinstance(ds, datasets.DatasetDict): | |
# Need to choose dataset split | |
if dataset_split not in ds.keys(): | |
return dataset_id, None, list(ds.keys()) | |
elif not isinstance(ds, datasets.Dataset): | |
# Unknown type | |
return dataset_id, None, None | |
return dataset_id, dataset_config, dataset_split | |
def try_validate(model_id, dataset_id, dataset_config, dataset_split, column_mapping): | |
# Validate model | |
m_id, ppl = check_model(model_id=model_id) | |
if m_id is None: | |
gr.Warning(f'Model "{model_id}" is not accessible. Please set your HF_TOKEN if it is a private model.') | |
return ( | |
dataset_config, dataset_split, | |
gr.update(interactive=False), # Submit button | |
gr.update(visible=False), # Model prediction preview | |
gr.update(visible=False), # Label mapping preview | |
gr.update(visible=True), # Column mapping | |
) | |
if isinstance(ppl, Exception): | |
gr.Warning(f'Failed to load "{model_id} model": {ppl}') | |
return ( | |
dataset_config, dataset_split, | |
gr.update(interactive=False), # Submit button | |
gr.update(visible=False), # Model prediction preview | |
gr.update(visible=False), # Label mapping preview | |
gr.update(visible=True), # Column mapping | |
) | |
# Validate dataset | |
d_id, config, split = check_dataset(dataset_id=dataset_id, dataset_config=dataset_config, dataset_split=dataset_split) | |
dataset_ok = False | |
if d_id is None: | |
gr.Warning(f'Dataset "{dataset_id}" is not accessible. Please set your HF_TOKEN if it is a private dataset.') | |
elif isinstance(config, list): | |
gr.Warning(f'Dataset "{dataset_id}" does not have "{dataset_config}" config. Please choose a valid config.') | |
config = gr.update(choices=config, value=config[0]) | |
elif isinstance(split, list): | |
gr.Warning(f'Dataset "{dataset_id}" does not have "{dataset_split}" split. Please choose a valid split.') | |
split = gr.update(choices=split, value=split[0]) | |
else: | |
dataset_ok = True | |
if not dataset_ok: | |
return ( | |
config, split, | |
gr.update(interactive=False), # Submit button | |
gr.update(visible=False), # Model prediction preview | |
gr.update(visible=False), # Label mapping preview | |
gr.update(visible=True), # Column mapping | |
) | |
# TODO: Validate column mapping by running once | |
prediction_result = None | |
id2label_df = None | |
if isinstance(ppl, TextClassificationPipeline): | |
try: | |
column_mapping = json.loads(column_mapping) | |
except Exception: | |
column_mapping = {} | |
column_mapping, prediction_result, id2label_df = \ | |
text_classification_fix_column_mapping(column_mapping, ppl, d_id, config, split) | |
column_mapping = json.dumps(column_mapping, indent=2) | |
del ppl | |
if prediction_result is None: | |
gr.Warning('The model failed to predict with the first row in the dataset. Please provide column mappings in "Advance" settings.') | |
return ( | |
config, split, | |
gr.update(interactive=False), # Submit button | |
gr.update(visible=False), # Model prediction preview | |
gr.update(visible=False), # Label mapping preview | |
gr.update(value=column_mapping, visible=True, interactive=True), # Column mapping | |
) | |
elif id2label_df is None: | |
gr.Warning('The prediction result does not conform the labels in the dataset. Please provide label mappings in "Advance" settings.') | |
return ( | |
config, split, | |
gr.update(interactive=False), # Submit button | |
gr.update(value=prediction_result, visible=True), # Model prediction preview | |
gr.update(visible=False), # Label mapping preview | |
gr.update(value=column_mapping, visible=True, interactive=True), # Column mapping | |
) | |
gr.Info("Model and dataset validations passed. Your can submit the evaluation task.") | |
return ( | |
config, split, | |
gr.update(interactive=True), # Submit button | |
gr.update(value=prediction_result, visible=True), # Model prediction preview | |
gr.update(value=id2label_df, visible=True), # Label mapping preview | |
gr.update(value=column_mapping, visible=True, interactive=True), # Column mapping | |
) | |
def try_submit(m_id, d_id, config, split, local): | |
if local: | |
command = [ | |
"python", | |
"cli.py", | |
"--loader", "huggingface", | |
"--model", m_id, | |
"--dataset", d_id, | |
"--dataset_config", config, | |
"--dataset_split", split, | |
"--hf_token", os.environ.get(HF_WRITE_TOKEN), | |
"--discussion_repo", os.environ.get(HF_REPO_ID) or os.environ.get(HF_SPACE_ID), | |
"--output_format", "markdown", | |
"--output_portal", "huggingface", | |
] | |
eval_str = f"[{m_id}]<{d_id}({config}, {split} set)>" | |
start = time.time() | |
logging.info(f"Start local evaluation on {eval_str}") | |
evaluator = subprocess.Popen( | |
command, | |
cwd=os.path.join(os.path.dirname(os.path.realpath(__file__)), "cicd"), | |
stderr=subprocess.STDOUT, | |
) | |
result = evaluator.wait() | |
logging.info(f"Finished local evaluation exit code {result} on {eval_str}: {time.time() - start:.2f}s") | |
with gr.Blocks(theme=theme) as iface: | |
with gr.Row(): | |
with gr.Column(): | |
model_id_input = gr.Textbox( | |
label="Hugging Face model id", | |
placeholder="cardiffnlp/twitter-roberta-base-sentiment-latest", | |
) | |
# TODO: Add supported model pairs: Text Classification - text-classification | |
model_type = gr.Dropdown( | |
label="Hugging Face model type", | |
choices=[ | |
("Auto-detect", 0), | |
("Text Classification", 1), | |
], | |
value=0, | |
) | |
example_labels = gr.Label(label='Model pipeline test prediction result', visible=False) | |
with gr.Column(): | |
dataset_id_input = gr.Textbox( | |
label="Hugging Face dataset id", | |
placeholder="tweet_eval", | |
) | |
dataset_config_input = gr.Dropdown( | |
label="Hugging Face dataset subset", | |
choices=[ | |
"default", | |
], | |
allow_custom_value=True, | |
value="default", | |
) | |
dataset_split_input = gr.Dropdown( | |
label="Hugging Face dataset split", | |
choices=[ | |
"test", | |
], | |
allow_custom_value=True, | |
value="test", | |
) | |
id2label_mapping_dataframe = gr.DataFrame(visible=False) | |
with gr.Row(): | |
with gr.Accordion("Advance", open=False): | |
run_local = gr.Checkbox(value=True, label="Run in this Space") | |
column_mapping_input = gr.Textbox( | |
value="", | |
lines=5, | |
label="Column mapping", | |
placeholder="Description of mapping of columns in model to dataset, in json format, e.g.:\n" | |
'{\n' | |
' "text": "context",\n' | |
' "label": {0: "Positive", 1: "Negative"}\n' | |
'}', | |
) | |
with gr.Row(): | |
validate_btn = gr.Button("Validate model and dataset", variant="primary") | |
run_btn = gr.Button( | |
"Submit evaluation task", | |
variant="primary", | |
interactive=False, | |
) | |
validate_btn.click( | |
try_validate, | |
inputs=[ | |
model_id_input, | |
dataset_id_input, | |
dataset_config_input, | |
dataset_split_input, | |
column_mapping_input, | |
], | |
outputs=[ | |
dataset_config_input, | |
dataset_split_input, | |
run_btn, | |
example_labels, | |
id2label_mapping_dataframe, | |
column_mapping_input, | |
], | |
) | |
run_btn.click( | |
try_submit, | |
inputs=[ | |
model_id_input, | |
dataset_id_input, | |
dataset_config_input, | |
dataset_split_input, | |
run_local, | |
], | |
) | |
iface.queue(max_size=20) | |
iface.launch() | |