Spaces:
Sleeping
Sleeping
Upload app.py
Browse files
app.py
CHANGED
@@ -1,21 +1,76 @@
|
|
|
|
|
|
1 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dotenv import load_dotenv
|
2 |
+
import os
|
3 |
import streamlit as st
|
4 |
+
import openai
|
5 |
+
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Document
|
6 |
+
from sentence_transformers import CrossEncoder
|
7 |
+
import fitz # PyMuPDF library for PDF processing
|
8 |
+
import tempfile
|
9 |
|
10 |
+
load_dotenv()
|
11 |
+
|
12 |
+
openai.api_key = os.getenv(st.secrets['api_key'])
|
13 |
+
|
14 |
+
# Create a sidebar
|
15 |
+
st.sidebar.title("Model Configuration")
|
16 |
+
|
17 |
+
# File uploader moved to the sidebar
|
18 |
+
uploaded_file = st.sidebar.file_uploader("Upload a PDF", type=["pdf"])
|
19 |
+
|
20 |
+
# Option menu for model selection
|
21 |
+
model_selection = st.sidebar.selectbox("Model Selection", ["GPT 3.5", "LLama 2"])
|
22 |
+
|
23 |
+
# Slider for selecting model temperature
|
24 |
+
model_temperature = st.sidebar.slider("Select model temperature", 0.0, 0.5, 1.0)
|
25 |
+
|
26 |
+
# Initialize LLM response storage
|
27 |
+
llm_responses = []
|
28 |
+
|
29 |
+
# Initialize HHEM model
|
30 |
+
hhem_model = CrossEncoder('vectara/hallucination_evaluation_model')
|
31 |
+
|
32 |
+
if uploaded_file is not None:
|
33 |
+
# Save the uploaded PDF file to a temporary location
|
34 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as temp_pdf:
|
35 |
+
temp_pdf.write(uploaded_file.read())
|
36 |
+
temp_pdf_path = temp_pdf.name
|
37 |
+
|
38 |
+
# Open the PDF file using PyMuPDF
|
39 |
+
pdf_document = fitz.open(temp_pdf_path)
|
40 |
+
|
41 |
+
text = ""
|
42 |
+
for page_number in range(pdf_document.page_count):
|
43 |
+
page = pdf_document[page_number]
|
44 |
+
text += page.get_text()
|
45 |
+
|
46 |
+
documents = [Document(text=text)]
|
47 |
+
|
48 |
+
index = VectorStoreIndex.from_documents(documents)
|
49 |
+
query_engine = index.as_query_engine()
|
50 |
+
|
51 |
+
query = st.text_input("Ask your question")
|
52 |
+
|
53 |
+
button = st.button("Ask")
|
54 |
+
|
55 |
+
if button:
|
56 |
+
print(query)
|
57 |
+
response = query_engine.query(query)
|
58 |
+
st.write(response.response)
|
59 |
+
|
60 |
+
# Record LLM response
|
61 |
+
llm_responses.append(response.response)
|
62 |
+
|
63 |
+
# Calculate and display HHEM score for each LLM response
|
64 |
+
for i, llm_response in enumerate(llm_responses):
|
65 |
+
score = hhem_model.predict([text, llm_response])
|
66 |
+
st.sidebar.write(f"Response {i + 1} - HHEM Score: {score}")
|
67 |
+
|
68 |
+
# Close and remove the temporary PDF file
|
69 |
+
pdf_document.close()
|
70 |
+
os.remove(temp_pdf_path)
|
71 |
+
|
72 |
+
# Display LLM responses
|
73 |
+
if llm_responses:
|
74 |
+
st.sidebar.markdown("## LLM Responses")
|
75 |
+
for i, llm_response in enumerate(llm_responses):
|
76 |
+
st.sidebar.write(f"Response {i + 1}: {llm_response}")
|