ginipick commited on
Commit
e9fef76
โ€ข
1 Parent(s): 095cabc

Create mgen.cod

Browse files
Files changed (1) hide show
  1. mgen.cod +702 -0
mgen.cod ADDED
@@ -0,0 +1,702 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import gradio as gr
3
+ import json
4
+ import logging
5
+ import torch
6
+ from PIL import Image
7
+ import spaces
8
+ from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL, AutoPipelineForImage2Image
9
+ from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
10
+ from diffusers.utils import load_image
11
+ from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, snapshot_download
12
+ import copy
13
+ import random
14
+ import time
15
+ import requests
16
+ import pandas as pd
17
+ from transformers import pipeline
18
+ from gradio_imageslider import ImageSlider
19
+ import numpy as np
20
+ import warnings
21
+
22
+
23
+ huggingface_token = os.getenv("HF_TOKEN")
24
+
25
+
26
+ translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en", device="cpu")
27
+
28
+
29
+
30
+ #Load prompts for randomization
31
+ df = pd.read_csv('prompts.csv', header=None)
32
+ prompt_values = df.values.flatten()
33
+
34
+ # Load LoRAs from JSON file
35
+ with open('loras.json', 'r') as f:
36
+ loras = json.load(f)
37
+
38
+ # Initialize the base model
39
+ dtype = torch.bfloat16
40
+
41
+ device = "cuda" if torch.cuda.is_available() else "cpu"
42
+
43
+ # ๊ณตํ†ต FLUX ๋ชจ๋ธ ๋กœ๋“œ
44
+ base_model = "black-forest-labs/FLUX.1-dev"
45
+ pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype).to(device)
46
+
47
+ # LoRA๋ฅผ ์œ„ํ•œ ์„ค์ •
48
+ taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
49
+ good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype).to(device)
50
+
51
+ # Image-to-Image ํŒŒ์ดํ”„๋ผ์ธ ์„ค์ •
52
+ pipe_i2i = AutoPipelineForImage2Image.from_pretrained(
53
+ base_model,
54
+ vae=good_vae,
55
+ transformer=pipe.transformer,
56
+ text_encoder=pipe.text_encoder,
57
+ tokenizer=pipe.tokenizer,
58
+ text_encoder_2=pipe.text_encoder_2,
59
+ tokenizer_2=pipe.tokenizer_2,
60
+ torch_dtype=dtype
61
+ ).to(device)
62
+
63
+ MAX_SEED = 2**32 - 1
64
+ MAX_PIXEL_BUDGET = 1024 * 1024
65
+
66
+ pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
67
+
68
+ class calculateDuration:
69
+ def __init__(self, activity_name=""):
70
+ self.activity_name = activity_name
71
+
72
+ def __enter__(self):
73
+ self.start_time = time.time()
74
+ return self
75
+
76
+ def __exit__(self, exc_type, exc_value, traceback):
77
+ self.end_time = time.time()
78
+ self.elapsed_time = self.end_time - self.start_time
79
+ if self.activity_name:
80
+ print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds")
81
+ else:
82
+ print(f"Elapsed time: {self.elapsed_time:.6f} seconds")
83
+
84
+ def download_file(url, directory=None):
85
+ if directory is None:
86
+ directory = os.getcwd() # Use current working directory if not specified
87
+
88
+ # Get the filename from the URL
89
+ filename = url.split('/')[-1]
90
+
91
+ # Full path for the downloaded file
92
+ filepath = os.path.join(directory, filename)
93
+
94
+ # Download the file
95
+ response = requests.get(url)
96
+ response.raise_for_status() # Raise an exception for bad status codes
97
+
98
+ # Write the content to the file
99
+ with open(filepath, 'wb') as file:
100
+ file.write(response.content)
101
+
102
+ return filepath
103
+
104
+ def update_selection(evt: gr.SelectData, selected_indices, loras_state, width, height):
105
+ selected_index = evt.index
106
+ selected_indices = selected_indices or []
107
+ if selected_index in selected_indices:
108
+ selected_indices.remove(selected_index)
109
+ else:
110
+ if len(selected_indices) < 3:
111
+ selected_indices.append(selected_index)
112
+ else:
113
+ gr.Warning("You can select up to 3 LoRAs, remove one to select a new one.")
114
+ return gr.update(), gr.update(), gr.update(), gr.update(), selected_indices, gr.update(), gr.update(), gr.update(), width, height, gr.update(), gr.update(), gr.update()
115
+
116
+ selected_info_1 = "Select LoRA 1"
117
+ selected_info_2 = "Select LoRA 2"
118
+ selected_info_3 = "Select LoRA 3"
119
+
120
+ lora_scale_1 = 1.15
121
+ lora_scale_2 = 1.15
122
+ lora_scale_3 = 1.15
123
+ lora_image_1 = None
124
+ lora_image_2 = None
125
+ lora_image_3 = None
126
+
127
+ if len(selected_indices) >= 1:
128
+ lora1 = loras_state[selected_indices[0]]
129
+ selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}](https://huggingface.co/{lora1['repo']}) โœจ"
130
+ lora_image_1 = lora1['image']
131
+ if len(selected_indices) >= 2:
132
+ lora2 = loras_state[selected_indices[1]]
133
+ selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}](https://huggingface.co/{lora2['repo']}) โœจ"
134
+ lora_image_2 = lora2['image']
135
+ if len(selected_indices) >= 3:
136
+ lora3 = loras_state[selected_indices[2]]
137
+ selected_info_3 = f"### LoRA 3 Selected: [{lora3['title']}](https://huggingface.co/{lora3['repo']}) โœจ"
138
+ lora_image_3 = lora3['image']
139
+
140
+ if selected_indices:
141
+ last_selected_lora = loras_state[selected_indices[-1]]
142
+ new_placeholder = f"Type a prompt for {last_selected_lora['title']}"
143
+ else:
144
+ new_placeholder = "Type a prompt after selecting a LoRA"
145
+
146
+ return gr.update(placeholder=new_placeholder), selected_info_1, selected_info_2, selected_info_3, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, width, height, lora_image_1, lora_image_2, lora_image_3
147
+
148
+ def remove_lora(selected_indices, loras_state, index_to_remove):
149
+ if len(selected_indices) > index_to_remove:
150
+ selected_indices.pop(index_to_remove)
151
+
152
+ selected_info_1 = "Select LoRA 1"
153
+ selected_info_2 = "Select LoRA 2"
154
+ selected_info_3 = "Select LoRA 3"
155
+ lora_scale_1 = 1.15
156
+ lora_scale_2 = 1.15
157
+ lora_scale_3 = 1.15
158
+ lora_image_1 = None
159
+ lora_image_2 = None
160
+ lora_image_3 = None
161
+
162
+ for i, idx in enumerate(selected_indices):
163
+ lora = loras_state[idx]
164
+ if i == 0:
165
+ selected_info_1 = f"### LoRA 1 Selected: [{lora['title']}]({lora['repo']}) โœจ"
166
+ lora_image_1 = lora['image']
167
+ elif i == 1:
168
+ selected_info_2 = f"### LoRA 2 Selected: [{lora['title']}]({lora['repo']}) โœจ"
169
+ lora_image_2 = lora['image']
170
+ elif i == 2:
171
+ selected_info_3 = f"### LoRA 3 Selected: [{lora['title']}]({lora['repo']}) โœจ"
172
+ lora_image_3 = lora['image']
173
+
174
+ return selected_info_1, selected_info_2, selected_info_3, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_image_1, lora_image_2, lora_image_3
175
+
176
+ def remove_lora_1(selected_indices, loras_state):
177
+ return remove_lora(selected_indices, loras_state, 0)
178
+
179
+ def remove_lora_2(selected_indices, loras_state):
180
+ return remove_lora(selected_indices, loras_state, 1)
181
+
182
+ def remove_lora_3(selected_indices, loras_state):
183
+ return remove_lora(selected_indices, loras_state, 2)
184
+
185
+ def randomize_loras(selected_indices, loras_state):
186
+ try:
187
+ if len(loras_state) < 3:
188
+ raise gr.Error("Not enough LoRAs to randomize.")
189
+ selected_indices = random.sample(range(len(loras_state)), 3)
190
+ lora1 = loras_state[selected_indices[0]]
191
+ lora2 = loras_state[selected_indices[1]]
192
+ lora3 = loras_state[selected_indices[2]]
193
+ selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}](https://huggingface.co/{lora1['repo']}) โœจ"
194
+ selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}](https://huggingface.co/{lora2['repo']}) โœจ"
195
+ selected_info_3 = f"### LoRA 3 Selected: [{lora3['title']}](https://huggingface.co/{lora3['repo']}) โœจ"
196
+ lora_scale_1 = 1.15
197
+ lora_scale_2 = 1.15
198
+ lora_scale_3 = 1.15
199
+ lora_image_1 = lora1.get('image', 'path/to/default/image.png')
200
+ lora_image_2 = lora2.get('image', 'path/to/default/image.png')
201
+ lora_image_3 = lora3.get('image', 'path/to/default/image.png')
202
+ random_prompt = random.choice(prompt_values)
203
+ return selected_info_1, selected_info_2, selected_info_3, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_image_1, lora_image_2, lora_image_3, random_prompt
204
+ except Exception as e:
205
+ print(f"Error in randomize_loras: {str(e)}")
206
+ return "Error", "Error", "Error", [], 1.15, 1.15, 1.15, 'path/to/default/image.png', 'path/to/default/image.png', 'path/to/default/image.png', ""
207
+
208
+ def add_custom_lora(custom_lora, selected_indices, current_loras):
209
+ if custom_lora:
210
+ try:
211
+ title, repo, path, trigger_word, image = check_custom_model(custom_lora)
212
+ print(f"Loaded custom LoRA: {repo}")
213
+ existing_item_index = next((index for (index, item) in enumerate(current_loras) if item['repo'] == repo), None)
214
+ if existing_item_index is None:
215
+ if repo.endswith(".safetensors") and repo.startswith("http"):
216
+ repo = download_file(repo)
217
+ new_item = {
218
+ "image": image if image else "/home/user/app/custom.png",
219
+ "title": title,
220
+ "repo": repo,
221
+ "weights": path,
222
+ "trigger_word": trigger_word
223
+ }
224
+ print(f"New LoRA: {new_item}")
225
+ existing_item_index = len(current_loras)
226
+ current_loras.append(new_item)
227
+
228
+ # Update gallery
229
+ gallery_items = [(item["image"], item["title"]) for item in current_loras]
230
+ # Update selected_indices if there's room
231
+ if len(selected_indices) < 3:
232
+ selected_indices.append(existing_item_index)
233
+ else:
234
+ gr.Warning("You can select up to 3 LoRAs, remove one to select a new one.")
235
+
236
+ # Update selected_info and images
237
+ selected_info_1 = "Select a LoRA 1"
238
+ selected_info_2 = "Select a LoRA 2"
239
+ selected_info_3 = "Select a LoRA 3"
240
+ lora_scale_1 = 1.15
241
+ lora_scale_2 = 1.15
242
+ lora_scale_3 = 1.15
243
+ lora_image_1 = None
244
+ lora_image_2 = None
245
+ lora_image_3 = None
246
+ if len(selected_indices) >= 1:
247
+ lora1 = current_loras[selected_indices[0]]
248
+ selected_info_1 = f"### LoRA 1 Selected: {lora1['title']} โœจ"
249
+ lora_image_1 = lora1['image'] if lora1['image'] else None
250
+ if len(selected_indices) >= 2:
251
+ lora2 = current_loras[selected_indices[1]]
252
+ selected_info_2 = f"### LoRA 2 Selected: {lora2['title']} โœจ"
253
+ lora_image_2 = lora2['image'] if lora2['image'] else None
254
+ if len(selected_indices) >= 3:
255
+ lora3 = current_loras[selected_indices[2]]
256
+ selected_info_3 = f"### LoRA 3 Selected: {lora3['title']} โœจ"
257
+ lora_image_3 = lora3['image'] if lora3['image'] else None
258
+ print("Finished adding custom LoRA")
259
+ return (
260
+ current_loras,
261
+ gr.update(value=gallery_items),
262
+ selected_info_1,
263
+ selected_info_2,
264
+ selected_info_3,
265
+ selected_indices,
266
+ lora_scale_1,
267
+ lora_scale_2,
268
+ lora_scale_3,
269
+ lora_image_1,
270
+ lora_image_2,
271
+ lora_image_3
272
+ )
273
+ except Exception as e:
274
+ print(e)
275
+ gr.Warning(str(e))
276
+ return current_loras, gr.update(), gr.update(), gr.update(), gr.update(), selected_indices, gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update()
277
+ else:
278
+ return current_loras, gr.update(), gr.update(), gr.update(), gr.update(), selected_indices, gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update()
279
+
280
+ def remove_custom_lora(selected_indices, current_loras):
281
+ if current_loras:
282
+ custom_lora_repo = current_loras[-1]['repo']
283
+ # Remove from loras list
284
+ current_loras = current_loras[:-1]
285
+ # Remove from selected_indices if selected
286
+ custom_lora_index = len(current_loras)
287
+ if custom_lora_index in selected_indices:
288
+ selected_indices.remove(custom_lora_index)
289
+ # Update gallery
290
+ gallery_items = [(item["image"], item["title"]) for item in current_loras]
291
+ # Update selected_info and images
292
+ selected_info_1 = "Select a LoRA 1"
293
+ selected_info_2 = "Select a LoRA 2"
294
+ selected_info_3 = "Select a LoRA 3"
295
+ lora_scale_1 = 1.15
296
+ lora_scale_2 = 1.15
297
+ lora_scale_3 = 1.15
298
+ lora_image_1 = None
299
+ lora_image_2 = None
300
+ lora_image_3 = None
301
+ if len(selected_indices) >= 1:
302
+ lora1 = current_loras[selected_indices[0]]
303
+ selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}]({lora1['repo']}) โœจ"
304
+ lora_image_1 = lora1['image']
305
+ if len(selected_indices) >= 2:
306
+ lora2 = current_loras[selected_indices[1]]
307
+ selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}]({lora2['repo']}) โœจ"
308
+ lora_image_2 = lora2['image']
309
+ if len(selected_indices) >= 3:
310
+ lora3 = current_loras[selected_indices[2]]
311
+ selected_info_3 = f"### LoRA 3 Selected: [{lora3['title']}]({lora3['repo']}) โœจ"
312
+ lora_image_3 = lora3['image']
313
+ return (
314
+ current_loras,
315
+ gr.update(value=gallery_items),
316
+ selected_info_1,
317
+ selected_info_2,
318
+ selected_info_3,
319
+ selected_indices,
320
+ lora_scale_1,
321
+ lora_scale_2,
322
+ lora_scale_3,
323
+ lora_image_1,
324
+ lora_image_2,
325
+ lora_image_3
326
+ )
327
+
328
+ @spaces.GPU(duration=75)
329
+ def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, progress):
330
+ print("Generating image...")
331
+ pipe.to("cuda")
332
+ generator = torch.Generator(device="cuda").manual_seed(seed)
333
+ with calculateDuration("Generating image"):
334
+ # Generate image
335
+ for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
336
+ prompt=prompt_mash,
337
+ num_inference_steps=steps,
338
+ guidance_scale=cfg_scale,
339
+ width=width,
340
+ height=height,
341
+ generator=generator,
342
+ joint_attention_kwargs={"scale": 1.0},
343
+ output_type="pil",
344
+ good_vae=good_vae,
345
+ ):
346
+ yield img
347
+
348
+ @spaces.GPU(duration=75)
349
+ def generate_image_to_image(prompt_mash, image_input_path, image_strength, steps, cfg_scale, width, height, seed):
350
+ pipe_i2i.to("cuda")
351
+ generator = torch.Generator(device="cuda").manual_seed(seed)
352
+ image_input = load_image(image_input_path)
353
+ final_image = pipe_i2i(
354
+ prompt=prompt_mash,
355
+ image=image_input,
356
+ strength=image_strength,
357
+ num_inference_steps=steps,
358
+ guidance_scale=cfg_scale,
359
+ width=width,
360
+ height=height,
361
+ generator=generator,
362
+ joint_attention_kwargs={"scale": 1.0},
363
+ output_type="pil",
364
+ ).images[0]
365
+ return final_image
366
+
367
+ def run_lora(prompt, image_input, image_strength, cfg_scale, steps, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, randomize_seed, seed, width, height, loras_state, progress=gr.Progress(track_tqdm=True)):
368
+ try:
369
+ # ํ•œ๊ธ€ ๊ฐ์ง€ ๋ฐ ๏ฟฝ๏ฟฝ๏ฟฝ์—ญ (์ด ๋ถ€๋ถ„์€ ๊ทธ๋Œ€๋กœ ์œ ์ง€)
370
+ if any('\u3131' <= char <= '\u318E' or '\uAC00' <= char <= '\uD7A3' for char in prompt):
371
+ translated = translator(prompt, max_length=512)[0]['translation_text']
372
+ print(f"Original prompt: {prompt}")
373
+ print(f"Translated prompt: {translated}")
374
+ prompt = translated
375
+
376
+ if not selected_indices:
377
+ raise gr.Error("You must select at least one LoRA before proceeding.")
378
+
379
+ selected_loras = [loras_state[idx] for idx in selected_indices]
380
+
381
+ # Build the prompt with trigger words (์ด ๋ถ€๋ถ„์€ ๊ทธ๋Œ€๋กœ ์œ ์ง€)
382
+ prepends = []
383
+ appends = []
384
+ for lora in selected_loras:
385
+ trigger_word = lora.get('trigger_word', '')
386
+ if trigger_word:
387
+ if lora.get("trigger_position") == "prepend":
388
+ prepends.append(trigger_word)
389
+ else:
390
+ appends.append(trigger_word)
391
+ prompt_mash = " ".join(prepends + [prompt] + appends)
392
+ print("Prompt Mash: ", prompt_mash)
393
+
394
+ # Unload previous LoRA weights
395
+ with calculateDuration("Unloading LoRA"):
396
+ pipe.unload_lora_weights()
397
+ pipe_i2i.unload_lora_weights()
398
+
399
+ print(f"Active adapters before loading: {pipe.get_active_adapters()}")
400
+
401
+ # Load LoRA weights with respective scales
402
+ lora_names = []
403
+ lora_weights = []
404
+ with calculateDuration("Loading LoRA weights"):
405
+ for idx, lora in enumerate(selected_loras):
406
+ try:
407
+ lora_name = f"lora_{idx}"
408
+ lora_path = lora['repo']
409
+ weight_name = lora.get("weights")
410
+ print(f"Loading LoRA {lora_name} from {lora_path}")
411
+ if image_input is not None:
412
+ if weight_name:
413
+ pipe_i2i.load_lora_weights(lora_path, weight_name=weight_name, adapter_name=lora_name)
414
+ else:
415
+ pipe_i2i.load_lora_weights(lora_path, adapter_name=lora_name)
416
+ else:
417
+ if weight_name:
418
+ pipe.load_lora_weights(lora_path, weight_name=weight_name, adapter_name=lora_name)
419
+ else:
420
+ pipe.load_lora_weights(lora_path, adapter_name=lora_name)
421
+ lora_names.append(lora_name)
422
+ lora_weights.append(lora_scale_1 if idx == 0 else lora_scale_2 if idx == 1 else lora_scale_3)
423
+ except Exception as e:
424
+ print(f"Failed to load LoRA {lora_name}: {str(e)}")
425
+
426
+ print("Loaded LoRAs:", lora_names)
427
+ print("Adapter weights:", lora_weights)
428
+
429
+ if lora_names:
430
+ if image_input is not None:
431
+ pipe_i2i.set_adapters(lora_names, adapter_weights=lora_weights)
432
+ else:
433
+ pipe.set_adapters(lora_names, adapter_weights=lora_weights)
434
+ else:
435
+ print("No LoRAs were successfully loaded.")
436
+ return None, seed, gr.update(visible=False)
437
+
438
+ print(f"Active adapters after loading: {pipe.get_active_adapters()}")
439
+
440
+ # ์—ฌ๊ธฐ์„œ๋ถ€ํ„ฐ ์ด๋ฏธ์ง€ ์ƒ์„ฑ ๋กœ์ง (์ด ๋ถ€๋ถ„์€ ๊ทธ๋Œ€๋กœ ์œ ์ง€)
441
+ with calculateDuration("Randomizing seed"):
442
+ if randomize_seed:
443
+ seed = random.randint(0, MAX_SEED)
444
+
445
+ if image_input is not None:
446
+ final_image = generate_image_to_image(prompt_mash, image_input, image_strength, steps, cfg_scale, width, height, seed)
447
+ else:
448
+ image_generator = generate_image(prompt_mash, steps, seed, cfg_scale, width, height, progress)
449
+ final_image = None
450
+ step_counter = 0
451
+ for image in image_generator:
452
+ step_counter += 1
453
+ final_image = image
454
+ progress_bar = f'<div class="progress-container"><div class="progress-bar" style="--current: {step_counter}; --total: {steps};"></div></div>'
455
+ yield image, seed, gr.update(value=progress_bar, visible=True)
456
+
457
+ if final_image is None:
458
+ raise Exception("Failed to generate image")
459
+
460
+ return final_image, seed, gr.update(visible=False)
461
+
462
+ except Exception as e:
463
+ print(f"Error in run_lora: {str(e)}")
464
+ return None, seed, gr.update(visible=False)
465
+
466
+ run_lora.zerogpu = True
467
+
468
+ def get_huggingface_safetensors(link):
469
+ split_link = link.split("/")
470
+ if len(split_link) == 2:
471
+ model_card = ModelCard.load(link)
472
+ base_model = model_card.data.get("base_model")
473
+ print(f"Base model: {base_model}")
474
+ if base_model not in ["black-forest-labs/FLUX.1-dev", "black-forest-labs/FLUX.1-schnell"]:
475
+ raise Exception("Not a FLUX LoRA!")
476
+ image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None)
477
+ trigger_word = model_card.data.get("instance_prompt", "")
478
+ image_url = f"https://huggingface.co/{link}/resolve/main/{image_path}" if image_path else None
479
+ fs = HfFileSystem()
480
+ safetensors_name = None
481
+ try:
482
+ list_of_files = fs.ls(link, detail=False)
483
+ for file in list_of_files:
484
+ if file.endswith(".safetensors"):
485
+ safetensors_name = file.split("/")[-1]
486
+ if not image_url and file.lower().endswith((".jpg", ".jpeg", ".png", ".webp")):
487
+ image_elements = file.split("/")
488
+ image_url = f"https://huggingface.co/{link}/resolve/main/{image_elements[-1]}"
489
+ except Exception as e:
490
+ print(e)
491
+ raise gr.Error("Invalid Hugging Face repository with a *.safetensors LoRA")
492
+ if not safetensors_name:
493
+ raise gr.Error("No *.safetensors file found in the repository")
494
+ return split_link[1], link, safetensors_name, trigger_word, image_url
495
+ else:
496
+ raise gr.Error("Invalid Hugging Face repository link")
497
+
498
+ def check_custom_model(link):
499
+ if link.endswith(".safetensors"):
500
+ # Treat as direct link to the LoRA weights
501
+ title = os.path.basename(link)
502
+ repo = link
503
+ path = None # No specific weight name
504
+ trigger_word = ""
505
+ image_url = None
506
+ return title, repo, path, trigger_word, image_url
507
+ elif link.startswith("https://"):
508
+ if "huggingface.co" in link:
509
+ link_split = link.split("huggingface.co/")
510
+ return get_huggingface_safetensors(link_split[1])
511
+ else:
512
+ raise Exception("Unsupported URL")
513
+ else:
514
+ # Assume it's a Hugging Face model path
515
+ return get_huggingface_safetensors(link)
516
+
517
+ def update_history(new_image, history):
518
+ """Updates the history gallery with the new image."""
519
+ if history is None:
520
+ history = []
521
+ if new_image is not None:
522
+ history.insert(0, new_image)
523
+ return history
524
+
525
+ css = '''
526
+ #gen_btn{height: 100%}
527
+ #title{text-align: center}
528
+ #title h1{font-size: 3em; display:inline-flex; align-items:center}
529
+ #title img{width: 100px; margin-right: 0.25em}
530
+ #gallery .grid-wrap{height: 5vh}
531
+ #lora_list{background: var(--block-background-fill);padding: 0 1em .3em; font-size: 90%}
532
+ .custom_lora_card{margin-bottom: 1em}
533
+ .card_internal{display: flex;height: 100px;margin-top: .5em}
534
+ .card_internal img{margin-right: 1em}
535
+ .styler{--form-gap-width: 0px !important}
536
+ #progress{height:30px}
537
+ #progress .generating{display:none}
538
+ .progress-container {width: 100%;height: 30px;background-color: #f0f0f0;border-radius: 15px;overflow: hidden;margin-bottom: 20px}
539
+ .progress-bar {height: 100%;background-color: #4f46e5;width: calc(var(--current) / var(--total) * 100%);transition: width 0.5s ease-in-out}
540
+ #component-8, .button_total{height: 100%; align-self: stretch;}
541
+ #loaded_loras [data-testid="block-info"]{font-size:80%}
542
+ #custom_lora_structure{background: var(--block-background-fill)}
543
+ #custom_lora_btn{margin-top: auto;margin-bottom: 11px}
544
+ #random_btn{font-size: 300%}
545
+ #component-11{align-self: stretch;}
546
+ footer {visibility: hidden;}
547
+ '''
548
+
549
+ with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css, delete_cache=(60, 3600)) as app:
550
+ loras_state = gr.State(loras)
551
+ selected_indices = gr.State([])
552
+
553
+ gr.Markdown(
554
+ """
555
+ # MixGen3: ๋ฉ€ํ‹ฐ Lora(์ด๋ฏธ์ง€ ํ•™์Šต) ํ†ตํ•ฉ ์ƒ์„ฑ ๋ชจ๋ธ
556
+
557
+ ### ์‚ฌ์šฉ ์•ˆ๋‚ด:
558
+ 1) ๊ฐค๋Ÿฌ๋ฆฌ์—์„œ ์›ํ•˜๋Š” ๋ชจ๋ธ์„ ์„ ํƒ(์ตœ๋Œ€ 3๊ฐœ๊นŒ์ง€)
559
+ 2) ํ”„๋กฌํ”„ํŠธ์— ํ•œ๊ธ€ ๋˜๋Š” ์˜๋ฌธ์œผ๋กœ ์›ํ•˜๋Š” ๋‚ด์šฉ์„ ์ž…๋ ฅ
560
+ 3) Generate ๋ฒ„ํŠผ ์‹คํ–‰
561
+ ### Contacts: arxivgpt@gmail.com
562
+ """
563
+ )
564
+
565
+ with gr.Row():
566
+ with gr.Column(scale=3):
567
+ prompt = gr.Textbox(label="Prompt", lines=1, placeholder="Type a prompt after selecting a LoRA")
568
+ with gr.Column(scale=1):
569
+ generate_button = gr.Button("Generate", variant="primary", elem_classes=["button_total"])
570
+
571
+
572
+
573
+
574
+ with gr.Row(elem_id="loaded_loras"):
575
+ with gr.Column(scale=1, min_width=25):
576
+ randomize_button = gr.Button("๐ŸŽฒ", variant="secondary", scale=1, elem_id="random_btn")
577
+ with gr.Column(scale=8):
578
+ with gr.Row():
579
+ with gr.Column(scale=0, min_width=50):
580
+ lora_image_1 = gr.Image(label="LoRA 1 Image", interactive=False, min_width=50, width=50, show_label=False, show_share_button=False, show_download_button=False, show_fullscreen_button=False, height=50)
581
+ with gr.Column(scale=3, min_width=100):
582
+ selected_info_1 = gr.Markdown("Select a LoRA 1")
583
+ with gr.Column(scale=5, min_width=50):
584
+ lora_scale_1 = gr.Slider(label="LoRA 1 Scale", minimum=0, maximum=3, step=0.01, value=1.15)
585
+ with gr.Row():
586
+ remove_button_1 = gr.Button("Remove", size="sm")
587
+
588
+ with gr.Column(scale=8):
589
+ with gr.Row():
590
+ with gr.Column(scale=0, min_width=50):
591
+ lora_image_2 = gr.Image(label="LoRA 2 Image", interactive=False, min_width=50, width=50, show_label=False, show_share_button=False, show_download_button=False, show_fullscreen_button=False, height=50)
592
+ with gr.Column(scale=3, min_width=100):
593
+ selected_info_2 = gr.Markdown("Select a LoRA 2")
594
+ with gr.Column(scale=5, min_width=50):
595
+ lora_scale_2 = gr.Slider(label="LoRA 2 Scale", minimum=0, maximum=3, step=0.01, value=1.15)
596
+ with gr.Row():
597
+ remove_button_2 = gr.Button("Remove", size="sm")
598
+
599
+ with gr.Column(scale=8):
600
+ with gr.Row():
601
+ with gr.Column(scale=0, min_width=50):
602
+ lora_image_3 = gr.Image(label="LoRA 3 Image", interactive=False, min_width=50, width=50, show_label=False, show_share_button=False, show_download_button=False, show_fullscreen_button=False, height=50)
603
+ with gr.Column(scale=3, min_width=100):
604
+ selected_info_3 = gr.Markdown("Select a LoRA 3")
605
+ with gr.Column(scale=5, min_width=50):
606
+ lora_scale_3 = gr.Slider(label="LoRA 3 Scale", minimum=0, maximum=3, step=0.01, value=1.15)
607
+ with gr.Row():
608
+ remove_button_3 = gr.Button("Remove", size="sm")
609
+
610
+ with gr.Row():
611
+ with gr.Column():
612
+ with gr.Group():
613
+ with gr.Row(elem_id="custom_lora_structure"):
614
+ custom_lora = gr.Textbox(label="Custom LoRA", info="LoRA Hugging Face path or *.safetensors public URL", placeholder="ginipick/flux-lora-eric-cat", scale=3, min_width=150)
615
+ add_custom_lora_button = gr.Button("Add Custom LoRA", elem_id="custom_lora_btn", scale=2, min_width=150)
616
+ remove_custom_lora_button = gr.Button("Remove Custom LoRA", visible=False)
617
+ gr.Markdown("[Check the list of FLUX LoRAs](https://huggingface.co/models?other=base_model:adapter:black-forest-labs/FLUX.1-dev)", elem_id="lora_list")
618
+ gallery = gr.Gallery(
619
+ [(item["image"], item["title"]) for item in loras],
620
+ label="Or pick from the LoRA Explorer gallery",
621
+ allow_preview=False,
622
+ columns=4,
623
+ elem_id="gallery"
624
+ )
625
+ with gr.Column():
626
+ progress_bar = gr.Markdown(elem_id="progress", visible=False)
627
+ result = gr.Image(label="Generated Image", interactive=False)
628
+ with gr.Accordion("History", open=False):
629
+ history_gallery = gr.Gallery(label="History", columns=6, object_fit="contain", interactive=False)
630
+
631
+ with gr.Row():
632
+ with gr.Accordion("Advanced Settings", open=False):
633
+ with gr.Row():
634
+ input_image = gr.Image(label="Input image", type="filepath")
635
+ image_strength = gr.Slider(label="Denoise Strength", info="Lower means more image influence", minimum=0.1, maximum=1.0, step=0.01, value=0.75)
636
+ with gr.Column():
637
+ with gr.Row():
638
+ cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=3.5)
639
+ steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=28)
640
+ with gr.Row():
641
+ width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024)
642
+ height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024)
643
+ with gr.Row():
644
+ randomize_seed = gr.Checkbox(True, label="Randomize seed")
645
+ seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
646
+
647
+ gallery.select(
648
+ update_selection,
649
+ inputs=[selected_indices, loras_state, width, height],
650
+ outputs=[prompt, selected_info_1, selected_info_2, selected_info_3, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, width, height, lora_image_1, lora_image_2, lora_image_3]
651
+ )
652
+
653
+ remove_button_1.click(
654
+ remove_lora_1,
655
+ inputs=[selected_indices, loras_state],
656
+ outputs=[selected_info_1, selected_info_2, selected_info_3, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_image_1, lora_image_2, lora_image_3]
657
+ )
658
+
659
+ remove_button_2.click(
660
+ remove_lora_2,
661
+ inputs=[selected_indices, loras_state],
662
+ outputs=[selected_info_1, selected_info_2, selected_info_3, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_image_1, lora_image_2, lora_image_3]
663
+ )
664
+
665
+ remove_button_3.click(
666
+ remove_lora_3,
667
+ inputs=[selected_indices, loras_state],
668
+ outputs=[selected_info_1, selected_info_2, selected_info_3, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_image_1, lora_image_2, lora_image_3]
669
+ )
670
+
671
+ randomize_button.click(
672
+ randomize_loras,
673
+ inputs=[selected_indices, loras_state],
674
+ outputs=[selected_info_1, selected_info_2, selected_info_3, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_image_1, lora_image_2, lora_image_3, prompt]
675
+ )
676
+
677
+ add_custom_lora_button.click(
678
+ add_custom_lora,
679
+ inputs=[custom_lora, selected_indices, loras_state],
680
+ outputs=[loras_state, gallery, selected_info_1, selected_info_2, selected_info_3, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_image_1, lora_image_2, lora_image_3]
681
+ )
682
+
683
+ remove_custom_lora_button.click(
684
+ remove_custom_lora,
685
+ inputs=[selected_indices, loras_state],
686
+ outputs=[loras_state, gallery, selected_info_1, selected_info_2, selected_info_3, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_image_1, lora_image_2, lora_image_3]
687
+ )
688
+
689
+ gr.on(
690
+ triggers=[generate_button.click, prompt.submit],
691
+ fn=run_lora,
692
+ inputs=[prompt, input_image, image_strength, cfg_scale, steps, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, randomize_seed, seed, width, height, loras_state],
693
+ outputs=[result, seed, progress_bar]
694
+ ).then(
695
+ fn=lambda x, history: update_history(x, history) if x is not None else history,
696
+ inputs=[result, history_gallery],
697
+ outputs=history_gallery,
698
+ )
699
+
700
+ if __name__ == "__main__":
701
+ app.queue(max_size=20)
702
+ app.launch(debug=True)