Delete uhdimage.cod
Browse files- uhdimage.cod +0 -271
uhdimage.cod
DELETED
@@ -1,271 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import yaml
|
3 |
-
import torch
|
4 |
-
import sys
|
5 |
-
sys.path.append(os.path.abspath('./'))
|
6 |
-
from inference.utils import *
|
7 |
-
from train import WurstCoreB
|
8 |
-
from gdf import DDPMSampler
|
9 |
-
from train import WurstCore_t2i as WurstCoreC
|
10 |
-
import numpy as np
|
11 |
-
import random
|
12 |
-
import argparse
|
13 |
-
import gradio as gr
|
14 |
-
import spaces
|
15 |
-
from huggingface_hub import hf_hub_url
|
16 |
-
import subprocess
|
17 |
-
from huggingface_hub import hf_hub_download
|
18 |
-
from transformers import pipeline
|
19 |
-
|
20 |
-
# Initialize the translation pipeline
|
21 |
-
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
|
22 |
-
|
23 |
-
def parse_args():
|
24 |
-
parser = argparse.ArgumentParser()
|
25 |
-
parser.add_argument('--height', type=int, default=2560, help='image height')
|
26 |
-
parser.add_argument('--width', type=int, default=5120, help='image width')
|
27 |
-
parser.add_argument('--seed', type=int, default=123, help='random seed')
|
28 |
-
parser.add_argument('--dtype', type=str, default='bf16', help='if bf16 does not work, change it to float32')
|
29 |
-
parser.add_argument('--config_c', type=str,
|
30 |
-
default='configs/training/t2i.yaml', help='config file for stage c, latent generation')
|
31 |
-
parser.add_argument('--config_b', type=str,
|
32 |
-
default='configs/inference/stage_b_1b.yaml', help='config file for stage b, latent decoding')
|
33 |
-
parser.add_argument('--prompt', type=str,
|
34 |
-
default='A photo-realistic image of a west highland white terrier in the garden, high quality, detail rich, 8K', help='text prompt')
|
35 |
-
parser.add_argument('--num_image', type=int, default=1, help='how many images generated')
|
36 |
-
parser.add_argument('--output_dir', type=str, default='figures/output_results/', help='output directory for generated image')
|
37 |
-
parser.add_argument('--stage_a_tiled', action='store_true', help='whether or not to use tiled decoding for stage a to save memory')
|
38 |
-
parser.add_argument('--pretrained_path', type=str, default='models/ultrapixel_t2i.safetensors', help='pretrained path of newly added parameter of UltraPixel')
|
39 |
-
args = parser.parse_args()
|
40 |
-
return args
|
41 |
-
|
42 |
-
def clear_image():
|
43 |
-
return None
|
44 |
-
|
45 |
-
def load_message(height, width, seed, prompt, args, stage_a_tiled):
|
46 |
-
args.height = height
|
47 |
-
args.width = width
|
48 |
-
args.seed = seed
|
49 |
-
args.prompt = prompt + ' rich detail, 4k, high quality'
|
50 |
-
args.stage_a_tiled = stage_a_tiled
|
51 |
-
return args
|
52 |
-
|
53 |
-
def is_korean(text):
|
54 |
-
return any('\uac00' <= char <= '\ud7a3' for char in text)
|
55 |
-
|
56 |
-
def translate_if_korean(text):
|
57 |
-
if is_korean(text):
|
58 |
-
translated = translator(text, max_length=512)[0]['translation_text']
|
59 |
-
print(f"Translated from Korean: {text} -> {translated}")
|
60 |
-
return translated
|
61 |
-
return text
|
62 |
-
|
63 |
-
@spaces.GPU(duration=120)
|
64 |
-
def get_image(height, width, seed, prompt, cfg, timesteps, stage_a_tiled):
|
65 |
-
global args
|
66 |
-
|
67 |
-
# Translate the prompt if it's in Korean
|
68 |
-
prompt = translate_if_korean(prompt)
|
69 |
-
|
70 |
-
args = load_message(height, width, seed, prompt, args, stage_a_tiled)
|
71 |
-
torch.manual_seed(args.seed)
|
72 |
-
random.seed(args.seed)
|
73 |
-
np.random.seed(args.seed)
|
74 |
-
dtype = torch.bfloat16 if args.dtype == 'bf16' else torch.float
|
75 |
-
|
76 |
-
captions = [args.prompt] * args.num_image
|
77 |
-
height, width = args.height, args.width
|
78 |
-
batch_size = 1
|
79 |
-
height_lr, width_lr = get_target_lr_size(height / width, std_size=32)
|
80 |
-
stage_c_latent_shape, stage_b_latent_shape = calculate_latent_sizes(height, width, batch_size=batch_size)
|
81 |
-
stage_c_latent_shape_lr, stage_b_latent_shape_lr = calculate_latent_sizes(height_lr, width_lr, batch_size=batch_size)
|
82 |
-
|
83 |
-
# Stage C Parameters
|
84 |
-
extras.sampling_configs['cfg'] = 4
|
85 |
-
extras.sampling_configs['shift'] = 1
|
86 |
-
extras.sampling_configs['timesteps'] = 20
|
87 |
-
extras.sampling_configs['t_start'] = 1.0
|
88 |
-
extras.sampling_configs['sampler'] = DDPMSampler(extras.gdf)
|
89 |
-
|
90 |
-
# Stage B Parameters
|
91 |
-
extras_b.sampling_configs['cfg'] = 1.1
|
92 |
-
extras_b.sampling_configs['shift'] = 1
|
93 |
-
extras_b.sampling_configs['timesteps'] = 10
|
94 |
-
extras_b.sampling_configs['t_start'] = 1.0
|
95 |
-
|
96 |
-
for _, caption in enumerate(captions):
|
97 |
-
batch = {'captions': [caption] * batch_size}
|
98 |
-
conditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=False)
|
99 |
-
unconditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=True)
|
100 |
-
|
101 |
-
with torch.no_grad():
|
102 |
-
models.generator.cuda()
|
103 |
-
print('STAGE C GENERATION***************************')
|
104 |
-
with torch.cuda.amp.autocast(dtype=dtype):
|
105 |
-
sampled_c = generation_c(batch, models, extras, core, stage_c_latent_shape, stage_c_latent_shape_lr, device)
|
106 |
-
|
107 |
-
models.generator.cpu()
|
108 |
-
torch.cuda.empty_cache()
|
109 |
-
|
110 |
-
conditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=False)
|
111 |
-
unconditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=True)
|
112 |
-
conditions_b['effnet'] = sampled_c
|
113 |
-
unconditions_b['effnet'] = torch.zeros_like(sampled_c)
|
114 |
-
print('STAGE B + A DECODING***************************')
|
115 |
-
|
116 |
-
with torch.cuda.amp.autocast(dtype=dtype):
|
117 |
-
sampled = decode_b(conditions_b, unconditions_b, models_b, stage_b_latent_shape, extras_b, device, stage_a_tiled=args.stage_a_tiled)
|
118 |
-
|
119 |
-
torch.cuda.empty_cache()
|
120 |
-
imgs = show_images(sampled)
|
121 |
-
|
122 |
-
return imgs[0]
|
123 |
-
|
124 |
-
css = """
|
125 |
-
footer {
|
126 |
-
visibility: hidden;
|
127 |
-
}
|
128 |
-
"""
|
129 |
-
|
130 |
-
with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css) as demo:
|
131 |
-
with gr.Column(elem_id="col-container"):
|
132 |
-
gr.Markdown("<h1><center>초고해상도 UHD 이미지(최대 5120 X 4096 픽셀) 생성</center></h1>")
|
133 |
-
|
134 |
-
with gr.Row():
|
135 |
-
prompt = gr.Textbox(
|
136 |
-
label="Text Prompt (한글 또는 영어로 입력하세요)",
|
137 |
-
show_label=False,
|
138 |
-
max_lines=1,
|
139 |
-
placeholder="프롬프트를 입력하세요 (Enter your prompt in Korean or English)",
|
140 |
-
container=False
|
141 |
-
)
|
142 |
-
polish_button = gr.Button("제출! (Submit!)", scale=0)
|
143 |
-
|
144 |
-
output_img = gr.Image(label="Output Image", show_label=False)
|
145 |
-
|
146 |
-
with gr.Accordion("Advanced Settings", open=False):
|
147 |
-
seed = gr.Number(
|
148 |
-
label="Random Seed",
|
149 |
-
value=123,
|
150 |
-
step=1,
|
151 |
-
minimum=0,
|
152 |
-
)
|
153 |
-
|
154 |
-
with gr.Row():
|
155 |
-
width = gr.Slider(
|
156 |
-
label="Width",
|
157 |
-
minimum=1536,
|
158 |
-
maximum=5120,
|
159 |
-
step=32,
|
160 |
-
value=4096
|
161 |
-
)
|
162 |
-
|
163 |
-
height = gr.Slider(
|
164 |
-
label="Height",
|
165 |
-
minimum=1536,
|
166 |
-
maximum=4096,
|
167 |
-
step=32,
|
168 |
-
value=2304
|
169 |
-
)
|
170 |
-
|
171 |
-
with gr.Row():
|
172 |
-
cfg = gr.Slider(
|
173 |
-
label="CFG",
|
174 |
-
minimum=3,
|
175 |
-
maximum=10,
|
176 |
-
step=0.1,
|
177 |
-
value=4
|
178 |
-
)
|
179 |
-
|
180 |
-
timesteps = gr.Slider(
|
181 |
-
label="Timesteps",
|
182 |
-
minimum=10,
|
183 |
-
maximum=50,
|
184 |
-
step=1,
|
185 |
-
value=20
|
186 |
-
)
|
187 |
-
|
188 |
-
stage_a_tiled = gr.Checkbox(label="Stage_a_tiled", value=False)
|
189 |
-
|
190 |
-
clear_button = gr.Button("Clear!")
|
191 |
-
|
192 |
-
gr.Examples(
|
193 |
-
examples=[
|
194 |
-
"A detailed view of a blooming magnolia tree, with large, white flowers and dark green leaves, set against a clear blue sky.",
|
195 |
-
"눈 덮인 산맥의 장엄한 전경, 푸른 하늘을 배경으로 한 고요한 호수가 있는 모습",
|
196 |
-
"The image features a snow-covered mountain range with a large, snow-covered mountain in the background. The mountain is surrounded by a forest of trees, and the sky is filled with clouds. The scene is set during the winter season, with snow covering the ground and the trees.",
|
197 |
-
"스웨터를 입은 악어",
|
198 |
-
"A vibrant anime scene of a young girl with long, flowing pink hair, big sparkling blue eyes, and a school uniform, standing under a cherry blossom tree with petals falling around her. The background shows a traditional Japanese school with cherry blossoms in full bloom.",
|
199 |
-
"골든 리트리버 강아지가 푸른 잔디밭에서 빨간 공을 쫓는 귀여운 모습",
|
200 |
-
"A cozy, rustic log cabin nestled in a snow-covered forest, with smoke rising from the stone chimney, warm lights glowing from the windows, and a path of footprints leading to the front door.",
|
201 |
-
"캐나다 밴프 국립공원의 아름다운 풍경, 청록색 호수와 눈 덮인 산들, 울창한 소나무 숲이 어우러진 모습",
|
202 |
-
"귀여운 시츄가 욕조에서 목욕하는 모습, 거품에 둘러싸인 채 살짝 젖은 모습으로 카메라를 바라보고 있음",
|
203 |
-
],
|
204 |
-
inputs=[prompt],
|
205 |
-
outputs=[output_img],
|
206 |
-
examples_per_page=5
|
207 |
-
)
|
208 |
-
|
209 |
-
polish_button.click(get_image, inputs=[height, width, seed, prompt, cfg, timesteps, stage_a_tiled], outputs=output_img)
|
210 |
-
polish_button.click(clear_image, inputs=[], outputs=output_img)
|
211 |
-
|
212 |
-
def download_with_wget(url, save_path):
|
213 |
-
try:
|
214 |
-
subprocess.run(['wget', url, '-O', save_path], check=True)
|
215 |
-
print(f"Downloaded to {save_path}")
|
216 |
-
except subprocess.CalledProcessError as e:
|
217 |
-
print(f"Error downloading file: {e}")
|
218 |
-
|
219 |
-
def download_model():
|
220 |
-
urls = [
|
221 |
-
'https://huggingface.co/stabilityai/StableWurst/resolve/main/stage_a.safetensors',
|
222 |
-
'https://huggingface.co/stabilityai/StableWurst/resolve/main/previewer.safetensors',
|
223 |
-
'https://huggingface.co/stabilityai/StableWurst/resolve/main/effnet_encoder.safetensors',
|
224 |
-
'https://huggingface.co/stabilityai/StableWurst/resolve/main/stage_b_lite_bf16.safetensors',
|
225 |
-
'https://huggingface.co/stabilityai/StableWurst/resolve/main/stage_c_bf16.safetensors',
|
226 |
-
]
|
227 |
-
for file_url in urls:
|
228 |
-
hf_hub_download(repo_id="stabilityai/stable-cascade", filename=file_url.split('/')[-1], local_dir='models')
|
229 |
-
hf_hub_download(repo_id="roubaofeipi/UltraPixel", filename='ultrapixel_t2i.safetensors', local_dir='models')
|
230 |
-
|
231 |
-
if __name__ == "__main__":
|
232 |
-
args = parse_args()
|
233 |
-
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
234 |
-
download_model()
|
235 |
-
config_file = args.config_c
|
236 |
-
with open(config_file, "r", encoding="utf-8") as file:
|
237 |
-
loaded_config = yaml.safe_load(file)
|
238 |
-
|
239 |
-
core = WurstCoreC(config_dict=loaded_config, device=device, training=False)
|
240 |
-
|
241 |
-
# SETUP STAGE B
|
242 |
-
config_file_b = args.config_b
|
243 |
-
with open(config_file_b, "r", encoding="utf-8") as file:
|
244 |
-
config_file_b = yaml.safe_load(file)
|
245 |
-
|
246 |
-
core_b = WurstCoreB(config_dict=config_file_b, device=device, training=False)
|
247 |
-
|
248 |
-
extras = core.setup_extras_pre()
|
249 |
-
models = core.setup_models(extras)
|
250 |
-
models.generator.eval().requires_grad_(False)
|
251 |
-
print("STAGE C READY")
|
252 |
-
|
253 |
-
extras_b = core_b.setup_extras_pre()
|
254 |
-
models_b = core_b.setup_models(extras_b, skip_clip=True)
|
255 |
-
models_b = WurstCoreB.Models(
|
256 |
-
**{**models_b.to_dict(), 'tokenizer': models.tokenizer, 'text_model': models.text_model}
|
257 |
-
)
|
258 |
-
models_b.generator.bfloat16().eval().requires_grad_(False)
|
259 |
-
print("STAGE B READY")
|
260 |
-
|
261 |
-
pretrained_path = args.pretrained_path
|
262 |
-
sdd = torch.load(pretrained_path, map_location='cpu')
|
263 |
-
collect_sd = {}
|
264 |
-
for k, v in sdd.items():
|
265 |
-
collect_sd[k[7:]] = v
|
266 |
-
|
267 |
-
models.train_norm.load_state_dict(collect_sd)
|
268 |
-
models.generator.eval()
|
269 |
-
models.train_norm.eval()
|
270 |
-
|
271 |
-
demo.launch(debug=True, share=True, auth=("gini","pick"))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|