|
import gradio as gr |
|
from huggingface_hub import InferenceClient |
|
import os |
|
import pandas as pd |
|
from typing import List, Tuple |
|
|
|
|
|
LLM_MODELS = { |
|
"Default": "CohereForAI/c4ai-command-r-plus-08-2024", |
|
"Mistral": "mistralai/Mistral-7B-Instruct-v0.2", |
|
"Zephyr": "HuggingFaceH4/zephyr-7b-beta", |
|
"OpenChat": "openchat/openchat-3.5", |
|
"Llama2": "meta-llama/Llama-2-7b-chat-hf", |
|
"Phi": "microsoft/phi-2", |
|
"Neural": "nvidia/neural-chat-7b-v3-1", |
|
"Starling": "HuggingFaceH4/starling-lm-7b-alpha" |
|
} |
|
|
|
def get_client(model_name): |
|
return InferenceClient(LLM_MODELS[model_name], token=os.getenv("HF_TOKEN")) |
|
|
|
def read_uploaded_file(file): |
|
if file is None: |
|
return "" |
|
try: |
|
if file.name.endswith('.parquet'): |
|
df = pd.read_parquet(file.name, engine='pyarrow') |
|
return df.head(10).to_markdown(index=False) |
|
else: |
|
content = file.read() |
|
if isinstance(content, bytes): |
|
return content.decode('utf-8') |
|
return content |
|
except Exception as e: |
|
return f"νμΌμ μ½λ μ€ μ€λ₯κ° λ°μνμ΅λλ€: {str(e)}" |
|
|
|
def format_history(history): |
|
formatted_history = [] |
|
for user_msg, assistant_msg in history: |
|
formatted_history.append({"role": "user", "content": user_msg}) |
|
if assistant_msg: |
|
formatted_history.append({"role": "assistant", "content": assistant_msg}) |
|
return formatted_history |
|
|
|
def chat(message, history, uploaded_file, model_name, system_message="", max_tokens=4000, temperature=0.7, top_p=0.9): |
|
system_prefix = """λ°λμ νκΈλ‘ λ΅λ³ν κ². λλ μ£Όμ΄μ§ μμ€μ½λλ λ°μ΄ν°λ₯Ό κΈ°λ°μΌλ‘ "μλΉμ€ μ¬μ© μ€λͺ
λ° μλ΄, Q&Aλ₯Ό νλ μν μ΄λ€". μμ£Ό μΉμ νκ³ μμΈνκ² 4000ν ν° μ΄μ Markdown νμμΌλ‘ μμ±νλΌ. λλ μ
λ ₯λ λ΄μ©μ κΈ°λ°μΌλ‘ μ¬μ© μ€λͺ
λ° μ§μ μλ΅μ μ§ννλ©°, μ΄μ©μμκ² λμμ μ£Όμ΄μΌ νλ€. μ΄μ©μκ° κΆκΈν΄ ν λ§ν λ΄μ©μ μΉμ νκ² μλ €μ£Όλλ‘ νλΌ. μ 체 λ΄μ©μ λν΄μλ 보μμ μ μ§νκ³ , ν€ κ° λ° μλν¬μΈνΈμ ꡬ체μ μΈ λͺ¨λΈμ 곡κ°νμ§ λ§λΌ.""" |
|
|
|
if uploaded_file: |
|
content = read_uploaded_file(uploaded_file) |
|
file_extension = os.path.splitext(uploaded_file.name)[1].lower() |
|
|
|
if file_extension == '.parquet': |
|
system_message += f"\n\nνμΌ λ΄μ©:\n```markdown\n{content}\n```" |
|
else: |
|
system_message += f"\n\nνμΌ λ΄μ©:\n```python\n{content}\n```" |
|
|
|
if message == "νμΌ λΆμμ μμν©λλ€.": |
|
message = """μ
λ‘λλ νμΌμ λΆμνμ¬ λ€μ λ΄μ©μ ν¬ν¨νμ¬ μμΈν μ€λͺ
νλΌ: |
|
1. νμΌμ μ£Όμ λͺ©μ κ³Ό κΈ°λ₯ |
|
2. μ£Όμ νΉμ§κ³Ό ꡬμ±μμ |
|
3. νμ© λ°©λ² λ° μ¬μ© μλλ¦¬μ€ |
|
4. μ£Όμμ¬ν λ° μ νμ¬ν |
|
5. κΈ°λν¨κ³Ό λ° μ₯μ """ |
|
|
|
messages = [{"role": "system", "content": f"{system_prefix} {system_message}"}] |
|
messages.extend(format_history(history)) |
|
messages.append({"role": "user", "content": message}) |
|
|
|
response = "" |
|
try: |
|
client = get_client(model_name) |
|
for msg in client.chat_completion( |
|
messages, |
|
max_tokens=max_tokens, |
|
stream=True, |
|
temperature=temperature, |
|
top_p=top_p, |
|
): |
|
token = msg.choices[0].delta.get('content', None) |
|
if token: |
|
response += token |
|
|
|
history = history + [[message, response]] |
|
return "", history |
|
except Exception as e: |
|
error_msg = f"μΆλ‘ μ€ μ€λ₯κ° λ°μνμ΅λλ€: {str(e)}" |
|
history = history + [[message, error_msg]] |
|
return "", history |
|
|
|
css = """ |
|
footer {visibility: hidden} |
|
""" |
|
|
|
with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo: |
|
with gr.Row(): |
|
with gr.Column(scale=2): |
|
chatbot = gr.Chatbot(height=600) |
|
msg = gr.Textbox( |
|
label="λ©μμ§λ₯Ό μ
λ ₯νμΈμ", |
|
show_label=False, |
|
placeholder="λ©μμ§λ₯Ό μ
λ ₯νμΈμ...", |
|
container=False |
|
) |
|
clear = gr.ClearButton([msg, chatbot]) |
|
|
|
with gr.Column(scale=1): |
|
model_name = gr.Dropdown( |
|
choices=list(LLM_MODELS.keys()), |
|
value="Default", |
|
label="LLM λͺ¨λΈ μ ν", |
|
info="μ¬μ©ν LLM λͺ¨λΈμ μ ννμΈμ" |
|
) |
|
|
|
file_upload = gr.File( |
|
label="νμΌ μ
λ‘λ (.csv, .txt, .py, .parquet)", |
|
file_types=[".csv", ".txt", ".py", ".parquet"], |
|
type="filepath" |
|
) |
|
|
|
with gr.Accordion("κ³ κΈ μ€μ ", open=False): |
|
system_message = gr.Textbox(label="System Message", value="") |
|
max_tokens = gr.Slider(minimum=1, maximum=8000, value=4000, label="Max Tokens") |
|
temperature = gr.Slider(minimum=0, maximum=1, value=0.7, label="Temperature") |
|
top_p = gr.Slider(minimum=0, maximum=1, value=0.9, label="Top P") |
|
|
|
|
|
msg.submit( |
|
chat, |
|
inputs=[msg, chatbot, file_upload, model_name, system_message, max_tokens, temperature, top_p], |
|
outputs=[msg, chatbot] |
|
) |
|
|
|
|
|
file_upload.change( |
|
chat, |
|
inputs=[gr.Textbox(value="νμΌ λΆμμ μμν©λλ€."), chatbot, file_upload, model_name, system_message, max_tokens, temperature, top_p], |
|
outputs=[msg, chatbot] |
|
) |
|
|
|
|
|
gr.Examples( |
|
examples=[ |
|
["μμΈν μ¬μ© λ°©λ²μ λ§μΉ νλ©΄μ 보면μ μ€λͺ
νλ―μ΄ 4000 ν ν° μ΄μ μμΈν μ€λͺ
νλΌ"], |
|
["FAQ 20건μ μμΈνκ² μμ±νλΌ. 4000ν ν° μ΄μ μ¬μ©νλΌ."], |
|
["μ¬μ© λ°©λ²κ³Ό μ°¨λ³μ , νΉμ§, κ°μ μ μ€μ¬μΌλ‘ 4000 ν ν° μ΄μ μ νλΈ μμ μ€ν¬λ¦½νΈ ννλ‘ μμ±νλΌ"], |
|
["λ³Έ μλΉμ€λ₯Ό SEO μ΅μ ννμ¬ λΈλ‘κ·Έ ν¬μ€νΈλ‘ 4000 ν ν° μ΄μ μμ±νλΌ"], |
|
["νΉν μΆμμ νμ©ν κΈ°μ λ° λΉμ¦λμ€λͺ¨λΈ μΈ‘λ©΄μ ν¬ν¨νμ¬ νΉν μΆμμ ꡬμ±μ λ§κ² μμ±νλΌ"], |
|
["κ³μ μ΄μ΄μ λ΅λ³νλΌ"], |
|
], |
|
inputs=msg, |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |