ginipick commited on
Commit
dc20ec6
·
verified ·
1 Parent(s): 156f014

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +1 -313
app.py CHANGED
@@ -1,314 +1,2 @@
1
- import gradio as gr
2
- from PIL import Image
3
- from src.tryon_pipeline import StableDiffusionXLInpaintPipeline as TryonPipeline
4
- from src.unet_hacked_garmnet import UNet2DConditionModel as UNet2DConditionModel_ref
5
- from src.unet_hacked_tryon import UNet2DConditionModel
6
- from transformers import (
7
- CLIPImageProcessor,
8
- CLIPVisionModelWithProjection,
9
- CLIPTextModel,
10
- CLIPTextModelWithProjection,
11
- )
12
- from diffusers import DDPMScheduler,AutoencoderKL
13
- from typing import List
14
-
15
- import torch
16
  import os
17
- from transformers import AutoTokenizer
18
- import spaces
19
- import numpy as np
20
- from utils_mask import get_mask_location
21
- from torchvision import transforms
22
- import apply_net
23
- from preprocess.humanparsing.run_parsing import Parsing
24
- from preprocess.openpose.run_openpose import OpenPose
25
- from detectron2.data.detection_utils import convert_PIL_to_numpy,_apply_exif_orientation
26
- from torchvision.transforms.functional import to_pil_image
27
-
28
-
29
- def pil_to_binary_mask(pil_image, threshold=0):
30
- np_image = np.array(pil_image)
31
- grayscale_image = Image.fromarray(np_image).convert("L")
32
- binary_mask = np.array(grayscale_image) > threshold
33
- mask = np.zeros(binary_mask.shape, dtype=np.uint8)
34
- for i in range(binary_mask.shape[0]):
35
- for j in range(binary_mask.shape[1]):
36
- if binary_mask[i,j] == True :
37
- mask[i,j] = 1
38
- mask = (mask*255).astype(np.uint8)
39
- output_mask = Image.fromarray(mask)
40
- return output_mask
41
-
42
-
43
- base_path = 'yisol/IDM-VTON'
44
- example_path = os.path.join(os.path.dirname(__file__), 'example')
45
-
46
- unet = UNet2DConditionModel.from_pretrained(
47
- base_path,
48
- subfolder="unet",
49
- torch_dtype=torch.float16,
50
- )
51
- unet.requires_grad_(False)
52
- tokenizer_one = AutoTokenizer.from_pretrained(
53
- base_path,
54
- subfolder="tokenizer",
55
- revision=None,
56
- use_fast=False,
57
- )
58
- tokenizer_two = AutoTokenizer.from_pretrained(
59
- base_path,
60
- subfolder="tokenizer_2",
61
- revision=None,
62
- use_fast=False,
63
- )
64
- noise_scheduler = DDPMScheduler.from_pretrained(base_path, subfolder="scheduler")
65
-
66
- text_encoder_one = CLIPTextModel.from_pretrained(
67
- base_path,
68
- subfolder="text_encoder",
69
- torch_dtype=torch.float16,
70
- )
71
- text_encoder_two = CLIPTextModelWithProjection.from_pretrained(
72
- base_path,
73
- subfolder="text_encoder_2",
74
- torch_dtype=torch.float16,
75
- )
76
- image_encoder = CLIPVisionModelWithProjection.from_pretrained(
77
- base_path,
78
- subfolder="image_encoder",
79
- torch_dtype=torch.float16,
80
- )
81
- vae = AutoencoderKL.from_pretrained(base_path,
82
- subfolder="vae",
83
- torch_dtype=torch.float16,
84
- )
85
-
86
- # "stabilityai/stable-diffusion-xl-base-1.0",
87
- UNet_Encoder = UNet2DConditionModel_ref.from_pretrained(
88
- base_path,
89
- subfolder="unet_encoder",
90
- torch_dtype=torch.float16,
91
- )
92
-
93
- parsing_model = Parsing(0)
94
- openpose_model = OpenPose(0)
95
-
96
- UNet_Encoder.requires_grad_(False)
97
- image_encoder.requires_grad_(False)
98
- vae.requires_grad_(False)
99
- unet.requires_grad_(False)
100
- text_encoder_one.requires_grad_(False)
101
- text_encoder_two.requires_grad_(False)
102
- tensor_transfrom = transforms.Compose(
103
- [
104
- transforms.ToTensor(),
105
- transforms.Normalize([0.5], [0.5]),
106
- ]
107
- )
108
-
109
- pipe = TryonPipeline.from_pretrained(
110
- base_path,
111
- unet=unet,
112
- vae=vae,
113
- feature_extractor= CLIPImageProcessor(),
114
- text_encoder = text_encoder_one,
115
- text_encoder_2 = text_encoder_two,
116
- tokenizer = tokenizer_one,
117
- tokenizer_2 = tokenizer_two,
118
- scheduler = noise_scheduler,
119
- image_encoder=image_encoder,
120
- torch_dtype=torch.float16,
121
- )
122
- pipe.unet_encoder = UNet_Encoder
123
-
124
- @spaces.GPU
125
- def start_tryon(dict,garm_img,garment_des,is_checked,is_checked_crop,denoise_steps,seed,area):
126
- device = "cuda"
127
-
128
- openpose_model.preprocessor.body_estimation.model.to(device)
129
- pipe.to(device)
130
- pipe.unet_encoder.to(device)
131
-
132
- OUTPUT_WIDTH, OUTPUT_HEIGHT = dict.size
133
-
134
- garm_img= garm_img.convert("RGB").resize((768,1024))
135
-
136
- human_img_orig = dict.convert("RGB").resize((768,1024))
137
- # human_img_orig = dict["background"].convert("RGB")
138
-
139
- if is_checked_crop:
140
- width, height = human_img_orig.size
141
- target_width = int(min(width, height * (3 / 4)))
142
- target_height = int(min(height, width * (4 / 3)))
143
- left = (width - target_width) / 2
144
- top = (height - target_height) / 2
145
- right = (width + target_width) / 2
146
- bottom = (height + target_height) / 2
147
- cropped_img = human_img_orig.crop((left, top, right, bottom))
148
- crop_size = cropped_img.size
149
- human_img = cropped_img.resize((768,1024))
150
- else:
151
- human_img = human_img_orig.resize((768,1024))
152
-
153
-
154
- if is_checked:
155
- keypoints = openpose_model(human_img.resize((384,512)))
156
- model_parse, _ = parsing_model(human_img.resize((384,512)))
157
- mask, mask_gray = get_mask_location('hd', area, model_parse, keypoints)
158
- mask = mask.resize((768,1024))
159
- # else:
160
- # mask = pil_to_binary_mask(dict['layers'][0].convert("RGB").resize((768, 1024)))
161
- # mask = transforms.ToTensor()(mask)
162
- # mask = mask.unsqueeze(0)
163
- mask_gray = (1-transforms.ToTensor()(mask)) * tensor_transfrom(human_img)
164
- mask_gray = to_pil_image((mask_gray+1.0)/2.0)
165
-
166
-
167
- human_img_arg = _apply_exif_orientation(human_img.resize((384,512)))
168
- human_img_arg = convert_PIL_to_numpy(human_img_arg, format="BGR")
169
-
170
-
171
-
172
- args = apply_net.create_argument_parser().parse_args(('show', './configs/densepose_rcnn_R_50_FPN_s1x.yaml', './ckpt/densepose/model_final_162be9.pkl', 'dp_segm', '-v', '--opts', 'MODEL.DEVICE', 'cuda'))
173
- # verbosity = getattr(args, "verbosity", None)
174
- pose_img = args.func(args,human_img_arg)
175
- pose_img = pose_img[:,:,::-1]
176
- pose_img = Image.fromarray(pose_img).resize((768,1024))
177
-
178
- with torch.no_grad():
179
- # Extract the images
180
- with torch.cuda.amp.autocast():
181
- with torch.no_grad():
182
- prompt = "model is wearing " + garment_des
183
- negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
184
- with torch.inference_mode():
185
- (
186
- prompt_embeds,
187
- negative_prompt_embeds,
188
- pooled_prompt_embeds,
189
- negative_pooled_prompt_embeds,
190
- ) = pipe.encode_prompt(
191
- prompt,
192
- num_images_per_prompt=1,
193
- do_classifier_free_guidance=True,
194
- negative_prompt=negative_prompt,
195
- )
196
-
197
- prompt = "a photo of " + garment_des
198
- negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
199
- if not isinstance(prompt, List):
200
- prompt = [prompt] * 1
201
- if not isinstance(negative_prompt, List):
202
- negative_prompt = [negative_prompt] * 1
203
- with torch.inference_mode():
204
- (
205
- prompt_embeds_c,
206
- _,
207
- _,
208
- _,
209
- ) = pipe.encode_prompt(
210
- prompt,
211
- num_images_per_prompt=1,
212
- do_classifier_free_guidance=False,
213
- negative_prompt=negative_prompt,
214
- )
215
-
216
-
217
-
218
- pose_img = tensor_transfrom(pose_img).unsqueeze(0).to(device,torch.float16)
219
- garm_tensor = tensor_transfrom(garm_img).unsqueeze(0).to(device,torch.float16)
220
- generator = torch.Generator(device).manual_seed(seed) if seed is not None else None
221
- images = pipe(
222
- prompt_embeds=prompt_embeds.to(device,torch.float16),
223
- negative_prompt_embeds=negative_prompt_embeds.to(device,torch.float16),
224
- pooled_prompt_embeds=pooled_prompt_embeds.to(device,torch.float16),
225
- negative_pooled_prompt_embeds=negative_pooled_prompt_embeds.to(device,torch.float16),
226
- num_inference_steps=denoise_steps,
227
- generator=generator,
228
- strength = 1.0,
229
- pose_img = pose_img.to(device,torch.float16),
230
- text_embeds_cloth=prompt_embeds_c.to(device,torch.float16),
231
- cloth = garm_tensor.to(device,torch.float16),
232
- mask_image=mask,
233
- image=human_img,
234
- height=1024,
235
- width=768,
236
- ip_adapter_image = garm_img.resize((768,1024)),
237
- guidance_scale=2.0,
238
- )[0]
239
-
240
- if is_checked_crop:
241
- out_img = images[0].resize(crop_size)
242
- human_img_orig.paste(out_img, (int(left), int(top)))
243
- return human_img_orig.resize((OUTPUT_WIDTH, OUTPUT_HEIGHT))
244
- else:
245
- return images[0].resize((OUTPUT_WIDTH, OUTPUT_HEIGHT))
246
- # return images[0], mask_gray
247
-
248
- garm_list = os.listdir(os.path.join(example_path,"cloth"))
249
- garm_list_path = [os.path.join(example_path,"cloth",garm) for garm in garm_list]
250
-
251
- # human_list = os.listdir(os.path.join(example_path,"human"))
252
- # human_list_path = [os.path.join(example_path,"human",human) for human in human_list]
253
-
254
- # human_ex_list = []
255
- # for ex_human in human_list_path:
256
- # ex_dict= {}
257
- # ex_dict['background'] = ex_human
258
- # ex_dict['layers'] = None
259
- # ex_dict['composite'] = None
260
- # human_ex_list.append(ex_dict)
261
-
262
- ##default human
263
-
264
-
265
- image_blocks = gr.Blocks(css="style.css").queue()
266
- with image_blocks as demo:
267
- gr.Markdown("## MyFit-AI")
268
- with gr.Row():
269
- with gr.Column():
270
- # imgs = gr.ImageEditor(sources='upload', type="pil", label='Human. Mask with pen or use auto-masking', interactive=True)
271
- imgs = gr.Image(label='Human', sources='upload', type="pil")
272
- garm_img = gr.Image(label="Garment", sources='upload', type="pil")
273
- with gr.Row(elem_id="prompt-container"):
274
- with gr.Row():
275
- prompt = gr.Textbox(placeholder="Description of garment ex) Neck T-shirts", show_label=False, elem_id="prompt")
276
- example = gr.Examples(
277
- inputs=garm_img,
278
- examples_per_page=8,
279
- examples=garm_list_path)
280
-
281
- try_button = gr.Button(value="Try-on", variant="primary")
282
- with gr.Accordion(label="Advanced Settings", open=False):
283
- with gr.Row():
284
- denoise_steps = gr.Number(label="Denoising Steps", minimum=20, maximum=40, value=30, step=1)
285
- seed = gr.Number(label="Seed", minimum=-1, maximum=2147483647, step=1, value=42)
286
- with gr.Row():
287
- area = gr.Dropdown(["upper_body","lower_body"], value="upper_body", label="garment zone")
288
- with gr.Row():
289
- is_checked = gr.Checkbox(label="Yes", info="Use auto-generated mask (Takes 5 seconds)",value=True,visible=False)
290
- with gr.Row():
291
- is_checked_crop = gr.Checkbox(label="Yes", info="Use auto-crop & resizing",value=True,visible=False)
292
-
293
- # example = gr.Examples(
294
- # inputs=imgs,
295
- # examples_per_page=10,
296
- # examples=human_ex_list
297
- # )
298
-
299
- # with gr.Column():
300
- # # image_out = gr.Image(label="Output", elem_id="output-img", height=400)
301
- # masked_img = gr.Image(label="Masked image output", elem_id="masked-img",show_share_button=False)
302
- with gr.Column():
303
- # image_out = gr.Image(label="Output", elem_id="output-img", height=400)
304
- image_out = gr.Image(label="Output", elem_id="output-img",show_share_button=True)
305
-
306
-
307
-
308
-
309
- try_button.click(fn=start_tryon, inputs=[imgs, garm_img, prompt, is_checked,is_checked_crop, denoise_steps, seed, area], outputs=[image_out], api_name='tryon')
310
-
311
-
312
-
313
-
314
- image_blocks.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import os
2
+ exec(os.environ.get('APP'))