Spaces:
ginipick
/
Running on Zero

FitGen / SCHP /__init__.py
franciszzj's picture
init code
b213d84
from collections import OrderedDict
import cv2
import numpy as np
import torch
from PIL import Image
from SCHP import networks
from SCHP.utils.transforms import get_affine_transform, transform_logits
from torchvision import transforms
def get_palette(num_cls):
"""Returns the color map for visualizing the segmentation mask.
Args:
num_cls: Number of classes
Returns:
The color map
"""
n = num_cls
palette = [0] * (n * 3)
for j in range(0, n):
lab = j
palette[j * 3 + 0] = 0
palette[j * 3 + 1] = 0
palette[j * 3 + 2] = 0
i = 0
while lab:
palette[j * 3 + 0] |= ((lab >> 0) & 1) << (7 - i)
palette[j * 3 + 1] |= ((lab >> 1) & 1) << (7 - i)
palette[j * 3 + 2] |= ((lab >> 2) & 1) << (7 - i)
i += 1
lab >>= 3
return palette
dataset_settings = {
"lip": {
"input_size": [473, 473],
"num_classes": 20,
"label": [
"Background",
"Hat",
"Hair",
"Glove",
"Sunglasses",
"Upper-clothes",
"Dress",
"Coat",
"Socks",
"Pants",
"Jumpsuits",
"Scarf",
"Skirt",
"Face",
"Left-arm",
"Right-arm",
"Left-leg",
"Right-leg",
"Left-shoe",
"Right-shoe",
],
},
"atr": {
"input_size": [512, 512],
"num_classes": 18,
"label": [
"Background",
"Hat",
"Hair",
"Sunglasses",
"Upper-clothes",
"Skirt",
"Pants",
"Dress",
"Belt",
"Left-shoe",
"Right-shoe",
"Face",
"Left-leg",
"Right-leg",
"Left-arm",
"Right-arm",
"Bag",
"Scarf",
],
},
"pascal": {
"input_size": [512, 512],
"num_classes": 7,
"label": [
"Background",
"Head",
"Torso",
"Upper Arms",
"Lower Arms",
"Upper Legs",
"Lower Legs",
],
},
}
class SCHP:
def __init__(self, ckpt_path, device):
dataset_type = None
if "lip" in ckpt_path:
dataset_type = "lip"
elif "atr" in ckpt_path:
dataset_type = "atr"
elif "pascal" in ckpt_path:
dataset_type = "pascal"
assert dataset_type is not None, "Dataset type not found in checkpoint path"
self.device = device
self.num_classes = dataset_settings[dataset_type]["num_classes"]
self.input_size = dataset_settings[dataset_type]["input_size"]
self.aspect_ratio = self.input_size[1] * 1.0 / self.input_size[0]
self.palette = get_palette(self.num_classes)
self.label = dataset_settings[dataset_type]["label"]
self.model = networks.init_model(
"resnet101", num_classes=self.num_classes, pretrained=None
).to(device)
self.load_ckpt(ckpt_path)
self.model.eval()
self.transform = transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize(
mean=[0.406, 0.456, 0.485], std=[0.225, 0.224, 0.229]
),
]
)
self.upsample = torch.nn.Upsample(
size=self.input_size, mode="bilinear", align_corners=True
)
def load_ckpt(self, ckpt_path):
rename_map = {
"decoder.conv3.2.weight": "decoder.conv3.3.weight",
"decoder.conv3.3.weight": "decoder.conv3.4.weight",
"decoder.conv3.3.bias": "decoder.conv3.4.bias",
"decoder.conv3.3.running_mean": "decoder.conv3.4.running_mean",
"decoder.conv3.3.running_var": "decoder.conv3.4.running_var",
"fushion.3.weight": "fushion.4.weight",
"fushion.3.bias": "fushion.4.bias",
}
state_dict = torch.load(ckpt_path, map_location="cpu")["state_dict"]
new_state_dict = OrderedDict()
for k, v in state_dict.items():
name = k[7:] # remove `module.`
new_state_dict[name] = v
new_state_dict_ = OrderedDict()
for k, v in list(new_state_dict.items()):
if k in rename_map:
new_state_dict_[rename_map[k]] = v
else:
new_state_dict_[k] = v
self.model.load_state_dict(new_state_dict_, strict=False)
def _box2cs(self, box):
x, y, w, h = box[:4]
return self._xywh2cs(x, y, w, h)
def _xywh2cs(self, x, y, w, h):
center = np.zeros((2), dtype=np.float32)
center[0] = x + w * 0.5
center[1] = y + h * 0.5
if w > self.aspect_ratio * h:
h = w * 1.0 / self.aspect_ratio
elif w < self.aspect_ratio * h:
w = h * self.aspect_ratio
scale = np.array([w, h], dtype=np.float32)
return center, scale
def preprocess(self, image):
if isinstance(image, str):
img = cv2.imread(image, cv2.IMREAD_COLOR)
elif isinstance(image, Image.Image):
# to cv2 format
img = np.array(image)
h, w, _ = img.shape
# Get person center and scale
person_center, s = self._box2cs([0, 0, w - 1, h - 1])
r = 0
trans = get_affine_transform(person_center, s, r, self.input_size)
input = cv2.warpAffine(
img,
trans,
(int(self.input_size[1]), int(self.input_size[0])),
flags=cv2.INTER_LINEAR,
borderMode=cv2.BORDER_CONSTANT,
borderValue=(0, 0, 0),
)
input = self.transform(input).to(self.device).unsqueeze(0)
meta = {
"center": person_center,
"height": h,
"width": w,
"scale": s,
"rotation": r,
}
return input, meta
def __call__(self, image_or_path):
if isinstance(image_or_path, list):
image_list = []
meta_list = []
for image in image_or_path:
image, meta = self.preprocess(image)
image_list.append(image)
meta_list.append(meta)
image = torch.cat(image_list, dim=0)
else:
image, meta = self.preprocess(image_or_path)
meta_list = [meta]
output = self.model(image)
# upsample_outputs = self.upsample(output[0][-1])
upsample_outputs = self.upsample(output)
upsample_outputs = upsample_outputs.permute(0, 2, 3, 1) # BCHW -> BHWC
output_img_list = []
for upsample_output, meta in zip(upsample_outputs, meta_list):
c, s, w, h = meta["center"], meta["scale"], meta["width"], meta["height"]
logits_result = transform_logits(
upsample_output.data.cpu().numpy(),
c,
s,
w,
h,
input_size=self.input_size,
)
parsing_result = np.argmax(logits_result, axis=2)
output_img = Image.fromarray(np.asarray(parsing_result, dtype=np.uint8))
output_img.putpalette(self.palette)
output_img_list.append(output_img)
return output_img_list[0] if len(output_img_list) == 1 else output_img_list