Spaces:
ginipick
/
Running on Zero

FitGen / utils /garment_agnostic_mask_predictor.py
franciszzj's picture
update gradio app
16c2627
raw
history blame
12.6 kB
import os
from typing import Union
import cv2
import numpy as np
import torch
from diffusers.image_processor import VaeImageProcessor
from PIL import Image
from SCHP import SCHP # type: ignore
from utils.densepose_for_mask import DensePose # type: ignore
DENSE_INDEX_MAP = {
"background": [0],
"torso": [1, 2],
"right hand": [3],
"left hand": [4],
"right foot": [5],
"left foot": [6],
"right thigh": [7, 9],
"left thigh": [8, 10],
"right leg": [11, 13],
"left leg": [12, 14],
"left big arm": [15, 17],
"right big arm": [16, 18],
"left forearm": [19, 21],
"right forearm": [20, 22],
"face": [23, 24],
"thighs": [7, 8, 9, 10],
"legs": [11, 12, 13, 14],
"hands": [3, 4],
"feet": [5, 6],
"big arms": [15, 16, 17, 18],
"forearms": [19, 20, 21, 22],
}
ATR_MAPPING = {
"Background": 0,
"Hat": 1,
"Hair": 2,
"Sunglasses": 3,
"Upper-clothes": 4,
"Skirt": 5,
"Pants": 6,
"Dress": 7,
"Belt": 8,
"Left-shoe": 9,
"Right-shoe": 10,
"Face": 11,
"Left-leg": 12,
"Right-leg": 13,
"Left-arm": 14,
"Right-arm": 15,
"Bag": 16,
"Scarf": 17,
}
LIP_MAPPING = {
"Background": 0,
"Hat": 1,
"Hair": 2,
"Glove": 3,
"Sunglasses": 4,
"Upper-clothes": 5,
"Dress": 6,
"Coat": 7,
"Socks": 8,
"Pants": 9,
"Jumpsuits": 10,
"Scarf": 11,
"Skirt": 12,
"Face": 13,
"Left-arm": 14,
"Right-arm": 15,
"Left-leg": 16,
"Right-leg": 17,
"Left-shoe": 18,
"Right-shoe": 19,
}
PROTECT_BODY_PARTS = {
"upper": ["Left-leg", "Right-leg"],
"lower": ["Right-arm", "Left-arm", "Face"],
"overall": [],
"inner": ["Left-leg", "Right-leg"],
"outer": ["Left-leg", "Right-leg"],
}
PROTECT_CLOTH_PARTS = {
"upper": {"ATR": ["Skirt", "Pants"], "LIP": ["Skirt", "Pants"]},
"lower": {"ATR": ["Upper-clothes"], "LIP": ["Upper-clothes", "Coat"]},
"overall": {"ATR": [], "LIP": []},
"inner": {
"ATR": ["Dress", "Coat", "Skirt", "Pants"],
"LIP": ["Dress", "Coat", "Skirt", "Pants", "Jumpsuits"],
},
"outer": {
"ATR": ["Dress", "Pants", "Skirt"],
"LIP": ["Upper-clothes", "Dress", "Pants", "Skirt", "Jumpsuits"],
},
}
MASK_CLOTH_PARTS = {
"upper": ["Upper-clothes", "Coat", "Dress", "Jumpsuits"],
"lower": ["Pants", "Skirt", "Dress", "Jumpsuits"],
"overall": ["Upper-clothes", "Dress", "Pants", "Skirt", "Coat", "Jumpsuits"],
"inner": ["Upper-clothes"],
"outer": [
"Coat",
],
}
MASK_DENSE_PARTS = {
"upper": ["torso", "big arms", "forearms"],
"lower": ["thighs", "legs"],
"overall": ["torso", "thighs", "legs", "big arms", "forearms"],
"inner": ["torso"],
"outer": ["torso", "big arms", "forearms"],
}
schp_public_protect_parts = [
"Hat",
"Hair",
"Sunglasses",
"Left-shoe",
"Right-shoe",
"Bag",
"Glove",
"Scarf",
]
schp_protect_parts = {
"upper": ["Left-leg", "Right-leg", "Skirt", "Pants", "Jumpsuits"],
"lower": ["Left-arm", "Right-arm", "Upper-clothes", "Coat"],
"overall": [],
"inner": ["Left-leg", "Right-leg", "Skirt", "Pants", "Jumpsuits", "Coat"],
"outer": ["Left-leg", "Right-leg", "Skirt", "Pants", "Jumpsuits", "Upper-clothes"],
}
schp_mask_parts = {
"upper": ["Upper-clothes", "Dress", "Coat", "Jumpsuits"],
"lower": ["Pants", "Skirt", "Dress", "Jumpsuits", "socks"],
"overall": [
"Upper-clothes",
"Dress",
"Pants",
"Skirt",
"Coat",
"Jumpsuits",
"socks",
],
"inner": ["Upper-clothes"],
"outer": [
"Coat",
],
}
dense_mask_parts = {
"upper": ["torso", "big arms", "forearms"],
"lower": ["thighs", "legs"],
"overall": ["torso", "thighs", "legs", "big arms", "forearms"],
"inner": ["torso"],
"outer": ["torso", "big arms", "forearms"],
}
def vis_mask(image, mask):
image = np.array(image).astype(np.uint8)
mask = np.array(mask).astype(np.uint8)
mask[mask > 127] = 255
mask[mask <= 127] = 0
mask = np.expand_dims(mask, axis=-1)
mask = np.repeat(mask, 3, axis=-1)
mask = mask / 255
return Image.fromarray((image * (1 - mask)).astype(np.uint8))
def part_mask_of(part: Union[str, list], parse: np.ndarray, mapping: dict):
if isinstance(part, str):
part = [part]
mask = np.zeros_like(parse)
for _ in part:
if _ not in mapping:
continue
if isinstance(mapping[_], list):
for i in mapping[_]:
mask += parse == i
else:
mask += parse == mapping[_]
return mask
def hull_mask(mask_area: np.ndarray):
ret, binary = cv2.threshold(mask_area, 127, 255, cv2.THRESH_BINARY)
contours, hierarchy = cv2.findContours(
binary, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE
)
hull_mask = np.zeros_like(mask_area)
for c in contours:
hull = cv2.convexHull(c)
hull_mask = cv2.fillPoly(np.zeros_like(mask_area), [hull], 255) | hull_mask
return hull_mask
class AutoMasker:
def __init__(
self,
densepose_path: str = "./ckpts/densepose",
schp_path: str = "./ckpts/schp",
device="cuda",
):
np.random.seed(0)
torch.manual_seed(0)
torch.cuda.manual_seed(0)
self.densepose_processor = DensePose(densepose_path, device)
self.schp_processor_atr = SCHP(
ckpt_path=os.path.join(schp_path, "exp-schp-201908301523-atr.pth"),
device=device,
)
self.schp_processor_lip = SCHP(
ckpt_path=os.path.join(schp_path, "exp-schp-201908261155-lip.pth"),
device=device,
)
self.mask_processor = VaeImageProcessor(
vae_scale_factor=8,
do_normalize=False,
do_binarize=True,
do_convert_grayscale=True,
)
def process_densepose(self, image_or_path):
return self.densepose_processor(image_or_path, resize=1024)
def process_schp_lip(self, image_or_path):
return self.schp_processor_lip(image_or_path)
def process_schp_atr(self, image_or_path):
return self.schp_processor_atr(image_or_path)
def preprocess_image(self, image_or_path):
return {
"densepose": self.densepose_processor(image_or_path, resize=1024),
"schp_atr": self.schp_processor_atr(image_or_path),
"schp_lip": self.schp_processor_lip(image_or_path),
}
@staticmethod
def cloth_agnostic_mask(
densepose_mask: Image.Image,
schp_lip_mask: Image.Image,
schp_atr_mask: Image.Image,
part: str = "overall",
**kwargs,
):
assert part in [
"upper",
"lower",
"overall",
"inner",
"outer",
], f"part should be one of ['upper', 'lower', 'overall', 'inner', 'outer'], but got {part}"
w, h = densepose_mask.size
dilate_kernel = max(w, h) // 250
dilate_kernel = dilate_kernel if dilate_kernel % 2 == 1 else dilate_kernel + 1
dilate_kernel = np.ones((dilate_kernel, dilate_kernel), np.uint8)
kernal_size = max(w, h) // 25
kernal_size = kernal_size if kernal_size % 2 == 1 else kernal_size + 1
densepose_mask = np.array(densepose_mask)
schp_lip_mask = np.array(schp_lip_mask)
schp_atr_mask = np.array(schp_atr_mask)
# Strong Protect Area (Hands, Face, Accessory, Feet)
hands_protect_area = part_mask_of(
["hands", "feet"], densepose_mask, DENSE_INDEX_MAP
)
hands_protect_area = cv2.dilate(hands_protect_area, dilate_kernel, iterations=1)
hands_protect_area = hands_protect_area & (
part_mask_of(
["Left-arm", "Right-arm", "Left-leg", "Right-leg"],
schp_atr_mask,
ATR_MAPPING,
)
| part_mask_of(
["Left-arm", "Right-arm", "Left-leg", "Right-leg"],
schp_lip_mask,
LIP_MAPPING,
)
)
face_protect_area = part_mask_of("Face", schp_lip_mask, LIP_MAPPING)
strong_protect_area = hands_protect_area | face_protect_area
# Weak Protect Area (Hair, Irrelevant Clothes, Body Parts)
body_protect_area = part_mask_of(
PROTECT_BODY_PARTS[part], schp_lip_mask, LIP_MAPPING
) | part_mask_of(PROTECT_BODY_PARTS[part], schp_atr_mask, ATR_MAPPING)
hair_protect_area = part_mask_of(
["Hair"], schp_lip_mask, LIP_MAPPING
) | part_mask_of(["Hair"], schp_atr_mask, ATR_MAPPING)
cloth_protect_area = part_mask_of(
PROTECT_CLOTH_PARTS[part]["LIP"], schp_lip_mask, LIP_MAPPING
) | part_mask_of(PROTECT_CLOTH_PARTS[part]["ATR"], schp_atr_mask, ATR_MAPPING)
accessory_protect_area = part_mask_of(
(
accessory_parts := [
"Hat",
"Glove",
"Sunglasses",
"Bag",
"Left-shoe",
"Right-shoe",
"Scarf",
"Socks",
]
),
schp_lip_mask,
LIP_MAPPING,
) | part_mask_of(accessory_parts, schp_atr_mask, ATR_MAPPING)
weak_protect_area = (
body_protect_area
| cloth_protect_area
| hair_protect_area
| strong_protect_area
| accessory_protect_area
)
# Mask Area
strong_mask_area = part_mask_of(
MASK_CLOTH_PARTS[part], schp_lip_mask, LIP_MAPPING
) | part_mask_of(MASK_CLOTH_PARTS[part], schp_atr_mask, ATR_MAPPING)
background_area = part_mask_of(
["Background"], schp_lip_mask, LIP_MAPPING
) & part_mask_of(["Background"], schp_atr_mask, ATR_MAPPING)
mask_dense_area = part_mask_of(
MASK_DENSE_PARTS[part], densepose_mask, DENSE_INDEX_MAP
)
mask_dense_area = cv2.resize(
mask_dense_area.astype(np.uint8),
None,
fx=0.25,
fy=0.25,
interpolation=cv2.INTER_NEAREST,
)
mask_dense_area = cv2.dilate(mask_dense_area, dilate_kernel, iterations=2)
mask_dense_area = cv2.resize(
mask_dense_area.astype(np.uint8),
None,
fx=4,
fy=4,
interpolation=cv2.INTER_NEAREST,
)
mask_area = (
np.ones_like(densepose_mask) & (~weak_protect_area) & (~background_area)
) | mask_dense_area
mask_area = (
hull_mask(mask_area * 255) // 255
) # Convex Hull to expand the mask area
mask_area = mask_area & (~weak_protect_area)
mask_area = cv2.GaussianBlur(mask_area * 255, (kernal_size, kernal_size), 0)
mask_area[mask_area < 25] = 0
mask_area[mask_area >= 25] = 1
mask_area = (mask_area | strong_mask_area) & (~strong_protect_area)
mask_area = cv2.dilate(mask_area, dilate_kernel, iterations=1)
return Image.fromarray(mask_area * 255)
def __call__(
self,
image: Union[str, Image.Image],
mask_type: str = "upper",
):
assert mask_type in [
"upper",
"lower",
"overall",
"inner",
"outer",
], f"mask_type should be one of ['upper', 'lower', 'overall', 'inner', 'outer'], but got {mask_type}"
preprocess_results = self.preprocess_image(image)
mask = self.cloth_agnostic_mask(
preprocess_results["densepose"],
preprocess_results["schp_lip"],
preprocess_results["schp_atr"],
part=mask_type,
)
return {
"mask": mask,
"densepose": preprocess_results["densepose"],
"schp_lip": preprocess_results["schp_lip"],
"schp_atr": preprocess_results["schp_atr"],
}
if __name__ == "__main__":
import os
import sys
from PIL import Image
automasker = AutoMasker()
image_path = sys.argv[1]
image = Image.open(image_path).convert("RGB")
outputs = automasker(
image,
"upper",
# "lower",
)
mask = outputs["mask"]
# densepose = outputs["densepose"] # densepose I map, range 0~24
# schp_lip = outputs["schp_lip"]
# schp_atr = outputs["schp_atr"]
mask.save(".".join(image_path.split(".")[:-1]) + "_mask.jpg")