Spaces:
ginipick
/
Running on Zero

franciszzj's picture
init code
b213d84
raw
history blame
16.1 kB
import logging
import numpy as np
import torch
import torch.nn as nn
from .backbone import Backbone
from .utils import (
PatchEmbed,
add_decomposed_rel_pos,
get_abs_pos,
window_partition,
window_unpartition,
)
logger = logging.getLogger(__name__)
__all__ = ["MViT"]
def attention_pool(x, pool, norm=None):
# (B, H, W, C) -> (B, C, H, W)
x = x.permute(0, 3, 1, 2)
x = pool(x)
# (B, C, H1, W1) -> (B, H1, W1, C)
x = x.permute(0, 2, 3, 1)
if norm:
x = norm(x)
return x
class MultiScaleAttention(nn.Module):
"""Multiscale Multi-head Attention block."""
def __init__(
self,
dim,
dim_out,
num_heads,
qkv_bias=True,
norm_layer=nn.LayerNorm,
pool_kernel=(3, 3),
stride_q=1,
stride_kv=1,
residual_pooling=True,
window_size=0,
use_rel_pos=False,
rel_pos_zero_init=True,
input_size=None,
):
"""
Args:
dim (int): Number of input channels.
dim_out (int): Number of output channels.
num_heads (int): Number of attention heads.
qkv_bias (bool: If True, add a learnable bias to query, key, value.
norm_layer (nn.Module): Normalization layer.
pool_kernel (tuple): kernel size for qkv pooling layers.
stride_q (int): stride size for q pooling layer.
stride_kv (int): stride size for kv pooling layer.
residual_pooling (bool): If true, enable residual pooling.
use_rel_pos (bool): If True, add relative postional embeddings to the attention map.
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
input_size (int or None): Input resolution.
"""
super().__init__()
self.num_heads = num_heads
head_dim = dim_out // num_heads
self.scale = head_dim**-0.5
self.qkv = nn.Linear(dim, dim_out * 3, bias=qkv_bias)
self.proj = nn.Linear(dim_out, dim_out)
# qkv pooling
pool_padding = [k // 2 for k in pool_kernel]
dim_conv = dim_out // num_heads
self.pool_q = nn.Conv2d(
dim_conv,
dim_conv,
pool_kernel,
stride=stride_q,
padding=pool_padding,
groups=dim_conv,
bias=False,
)
self.norm_q = norm_layer(dim_conv)
self.pool_k = nn.Conv2d(
dim_conv,
dim_conv,
pool_kernel,
stride=stride_kv,
padding=pool_padding,
groups=dim_conv,
bias=False,
)
self.norm_k = norm_layer(dim_conv)
self.pool_v = nn.Conv2d(
dim_conv,
dim_conv,
pool_kernel,
stride=stride_kv,
padding=pool_padding,
groups=dim_conv,
bias=False,
)
self.norm_v = norm_layer(dim_conv)
self.window_size = window_size
if window_size:
self.q_win_size = window_size // stride_q
self.kv_win_size = window_size // stride_kv
self.residual_pooling = residual_pooling
self.use_rel_pos = use_rel_pos
if self.use_rel_pos:
# initialize relative positional embeddings
assert input_size[0] == input_size[1]
size = input_size[0]
rel_dim = 2 * max(size // stride_q, size // stride_kv) - 1
self.rel_pos_h = nn.Parameter(torch.zeros(rel_dim, head_dim))
self.rel_pos_w = nn.Parameter(torch.zeros(rel_dim, head_dim))
if not rel_pos_zero_init:
nn.init.trunc_normal_(self.rel_pos_h, std=0.02)
nn.init.trunc_normal_(self.rel_pos_w, std=0.02)
def forward(self, x):
B, H, W, _ = x.shape
# qkv with shape (3, B, nHead, H, W, C)
qkv = self.qkv(x).reshape(B, H, W, 3, self.num_heads, -1).permute(3, 0, 4, 1, 2, 5)
# q, k, v with shape (B * nHead, H, W, C)
q, k, v = qkv.reshape(3, B * self.num_heads, H, W, -1).unbind(0)
q = attention_pool(q, self.pool_q, self.norm_q)
k = attention_pool(k, self.pool_k, self.norm_k)
v = attention_pool(v, self.pool_v, self.norm_v)
ori_q = q
if self.window_size:
q, q_hw_pad = window_partition(q, self.q_win_size)
k, kv_hw_pad = window_partition(k, self.kv_win_size)
v, _ = window_partition(v, self.kv_win_size)
q_hw = (self.q_win_size, self.q_win_size)
kv_hw = (self.kv_win_size, self.kv_win_size)
else:
q_hw = q.shape[1:3]
kv_hw = k.shape[1:3]
q = q.view(q.shape[0], np.prod(q_hw), -1)
k = k.view(k.shape[0], np.prod(kv_hw), -1)
v = v.view(v.shape[0], np.prod(kv_hw), -1)
attn = (q * self.scale) @ k.transpose(-2, -1)
if self.use_rel_pos:
attn = add_decomposed_rel_pos(attn, q, self.rel_pos_h, self.rel_pos_w, q_hw, kv_hw)
attn = attn.softmax(dim=-1)
x = attn @ v
x = x.view(x.shape[0], q_hw[0], q_hw[1], -1)
if self.window_size:
x = window_unpartition(x, self.q_win_size, q_hw_pad, ori_q.shape[1:3])
if self.residual_pooling:
x += ori_q
H, W = x.shape[1], x.shape[2]
x = x.view(B, self.num_heads, H, W, -1).permute(0, 2, 3, 1, 4).reshape(B, H, W, -1)
x = self.proj(x)
return x
class MultiScaleBlock(nn.Module):
"""Multiscale Transformer blocks"""
def __init__(
self,
dim,
dim_out,
num_heads,
mlp_ratio=4.0,
qkv_bias=True,
drop_path=0.0,
norm_layer=nn.LayerNorm,
act_layer=nn.GELU,
qkv_pool_kernel=(3, 3),
stride_q=1,
stride_kv=1,
residual_pooling=True,
window_size=0,
use_rel_pos=False,
rel_pos_zero_init=True,
input_size=None,
):
"""
Args:
dim (int): Number of input channels.
dim_out (int): Number of output channels.
num_heads (int): Number of attention heads in the MViT block.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
qkv_bias (bool): If True, add a learnable bias to query, key, value.
drop_path (float): Stochastic depth rate.
norm_layer (nn.Module): Normalization layer.
act_layer (nn.Module): Activation layer.
qkv_pool_kernel (tuple): kernel size for qkv pooling layers.
stride_q (int): stride size for q pooling layer.
stride_kv (int): stride size for kv pooling layer.
residual_pooling (bool): If true, enable residual pooling.
window_size (int): Window size for window attention blocks. If it equals 0, then not
use window attention.
use_rel_pos (bool): If True, add relative postional embeddings to the attention map.
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
input_size (int or None): Input resolution.
"""
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = MultiScaleAttention(
dim,
dim_out,
num_heads=num_heads,
qkv_bias=qkv_bias,
norm_layer=norm_layer,
pool_kernel=qkv_pool_kernel,
stride_q=stride_q,
stride_kv=stride_kv,
residual_pooling=residual_pooling,
window_size=window_size,
use_rel_pos=use_rel_pos,
rel_pos_zero_init=rel_pos_zero_init,
input_size=input_size,
)
from timm.models.layers import DropPath, Mlp
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
self.norm2 = norm_layer(dim_out)
self.mlp = Mlp(
in_features=dim_out,
hidden_features=int(dim_out * mlp_ratio),
out_features=dim_out,
act_layer=act_layer,
)
if dim != dim_out:
self.proj = nn.Linear(dim, dim_out)
if stride_q > 1:
kernel_skip = stride_q + 1
padding_skip = int(kernel_skip // 2)
self.pool_skip = nn.MaxPool2d(kernel_skip, stride_q, padding_skip, ceil_mode=False)
def forward(self, x):
x_norm = self.norm1(x)
x_block = self.attn(x_norm)
if hasattr(self, "proj"):
x = self.proj(x_norm)
if hasattr(self, "pool_skip"):
x = attention_pool(x, self.pool_skip)
x = x + self.drop_path(x_block)
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
class MViT(Backbone):
"""
This module implements Multiscale Vision Transformer (MViT) backbone in :paper:'mvitv2'.
"""
def __init__(
self,
img_size=224,
patch_kernel=(7, 7),
patch_stride=(4, 4),
patch_padding=(3, 3),
in_chans=3,
embed_dim=96,
depth=16,
num_heads=1,
last_block_indexes=(0, 2, 11, 15),
qkv_pool_kernel=(3, 3),
adaptive_kv_stride=4,
adaptive_window_size=56,
residual_pooling=True,
mlp_ratio=4.0,
qkv_bias=True,
drop_path_rate=0.0,
norm_layer=nn.LayerNorm,
act_layer=nn.GELU,
use_abs_pos=False,
use_rel_pos=True,
rel_pos_zero_init=True,
use_act_checkpoint=False,
pretrain_img_size=224,
pretrain_use_cls_token=True,
out_features=("scale2", "scale3", "scale4", "scale5"),
):
"""
Args:
img_size (int): Input image size.
patch_kernel (tuple): kernel size for patch embedding.
patch_stride (tuple): stride size for patch embedding.
patch_padding (tuple): padding size for patch embedding.
in_chans (int): Number of input image channels.
embed_dim (int): Patch embedding dimension.
depth (int): Depth of MViT.
num_heads (int): Number of base attention heads in each MViT block.
last_block_indexes (tuple): Block indexes for last blocks in each stage.
qkv_pool_kernel (tuple): kernel size for qkv pooling layers.
adaptive_kv_stride (int): adaptive stride size for kv pooling.
adaptive_window_size (int): adaptive window size for window attention blocks.
residual_pooling (bool): If true, enable residual pooling.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
qkv_bias (bool): If True, add a learnable bias to query, key, value.
drop_path_rate (float): Stochastic depth rate.
norm_layer (nn.Module): Normalization layer.
act_layer (nn.Module): Activation layer.
use_abs_pos (bool): If True, use absolute positional embeddings.
use_rel_pos (bool): If True, add relative postional embeddings to the attention map.
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
window_size (int): Window size for window attention blocks.
use_act_checkpoint (bool): If True, use activation checkpointing.
pretrain_img_size (int): input image size for pretraining models.
pretrain_use_cls_token (bool): If True, pretrainig models use class token.
out_features (tuple): name of the feature maps from each stage.
"""
super().__init__()
self.pretrain_use_cls_token = pretrain_use_cls_token
self.patch_embed = PatchEmbed(
kernel_size=patch_kernel,
stride=patch_stride,
padding=patch_padding,
in_chans=in_chans,
embed_dim=embed_dim,
)
if use_abs_pos:
# Initialize absoluate positional embedding with pretrain image size.
num_patches = (pretrain_img_size // patch_stride[0]) * (
pretrain_img_size // patch_stride[1]
)
num_positions = (num_patches + 1) if pretrain_use_cls_token else num_patches
self.pos_embed = nn.Parameter(torch.zeros(1, num_positions, embed_dim))
else:
self.pos_embed = None
# stochastic depth decay rule
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)]
dim_out = embed_dim
stride_kv = adaptive_kv_stride
window_size = adaptive_window_size
input_size = (img_size // patch_stride[0], img_size // patch_stride[1])
stage = 2
stride = patch_stride[0]
self._out_feature_strides = {}
self._out_feature_channels = {}
self.blocks = nn.ModuleList()
for i in range(depth):
# Multiply stride_kv by 2 if it's the last block of stage2 and stage3.
if i == last_block_indexes[1] or i == last_block_indexes[2]:
stride_kv_ = stride_kv * 2
else:
stride_kv_ = stride_kv
# hybrid window attention: global attention in last three stages.
window_size_ = 0 if i in last_block_indexes[1:] else window_size
block = MultiScaleBlock(
dim=embed_dim,
dim_out=dim_out,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
drop_path=dpr[i],
norm_layer=norm_layer,
qkv_pool_kernel=qkv_pool_kernel,
stride_q=2 if i - 1 in last_block_indexes else 1,
stride_kv=stride_kv_,
residual_pooling=residual_pooling,
window_size=window_size_,
use_rel_pos=use_rel_pos,
rel_pos_zero_init=rel_pos_zero_init,
input_size=input_size,
)
if use_act_checkpoint:
# TODO: use torch.utils.checkpoint
from fairscale.nn.checkpoint import checkpoint_wrapper
block = checkpoint_wrapper(block)
self.blocks.append(block)
embed_dim = dim_out
if i in last_block_indexes:
name = f"scale{stage}"
if name in out_features:
self._out_feature_channels[name] = dim_out
self._out_feature_strides[name] = stride
self.add_module(f"{name}_norm", norm_layer(dim_out))
dim_out *= 2
num_heads *= 2
stride_kv = max(stride_kv // 2, 1)
stride *= 2
stage += 1
if i - 1 in last_block_indexes:
window_size = window_size // 2
input_size = [s // 2 for s in input_size]
self._out_features = out_features
self._last_block_indexes = last_block_indexes
if self.pos_embed is not None:
nn.init.trunc_normal_(self.pos_embed, std=0.02)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
nn.init.trunc_normal_(m.weight, std=0.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def forward(self, x):
x = self.patch_embed(x)
if self.pos_embed is not None:
x = x + get_abs_pos(self.pos_embed, self.pretrain_use_cls_token, x.shape[1:3])
outputs = {}
stage = 2
for i, blk in enumerate(self.blocks):
x = blk(x)
if i in self._last_block_indexes:
name = f"scale{stage}"
if name in self._out_features:
x_out = getattr(self, f"{name}_norm")(x)
outputs[name] = x_out.permute(0, 3, 1, 2)
stage += 1
return outputs