Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -1,528 +1,2 @@
|
|
1 |
-
# 1. 먼저 로깅 설정
|
2 |
-
import logging
|
3 |
-
logging.basicConfig(level=logging.INFO)
|
4 |
-
logger = logging.getLogger(__name__)
|
5 |
-
|
6 |
-
# 2. spaces를 먼저 import
|
7 |
-
import spaces
|
8 |
-
|
9 |
-
# 3. 나머지 imports
|
10 |
import os
|
11 |
-
|
12 |
-
from datetime import datetime
|
13 |
-
import gradio as gr
|
14 |
-
import torch
|
15 |
-
import requests
|
16 |
-
from pathlib import Path
|
17 |
-
import cv2
|
18 |
-
from PIL import Image
|
19 |
-
import json
|
20 |
-
import torchaudio
|
21 |
-
import tempfile
|
22 |
-
|
23 |
-
# 4. GPU 초기화 설정
|
24 |
-
if torch.cuda.is_available():
|
25 |
-
device = torch.device('cuda')
|
26 |
-
logger.info(f"Using GPU: {torch.cuda.get_device_name(0)}")
|
27 |
-
else:
|
28 |
-
device = torch.device('cpu')
|
29 |
-
logger.warning("GPU not available, using CPU")
|
30 |
-
|
31 |
-
try:
|
32 |
-
import mmaudio
|
33 |
-
except ImportError:
|
34 |
-
os.system("pip install -e .")
|
35 |
-
import mmaudio
|
36 |
-
|
37 |
-
# 나머지 imports
|
38 |
-
from mmaudio.eval_utils import (ModelConfig, all_model_cfg, generate, load_video, make_video,
|
39 |
-
setup_eval_logging)
|
40 |
-
from mmaudio.model.flow_matching import FlowMatching
|
41 |
-
from mmaudio.model.networks import MMAudio, get_my_mmaudio
|
42 |
-
from mmaudio.model.sequence_config import SequenceConfig
|
43 |
-
from mmaudio.model.utils.features_utils import FeaturesUtils
|
44 |
-
|
45 |
-
# 번역 모델 import
|
46 |
-
from transformers import pipeline
|
47 |
-
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
|
48 |
-
|
49 |
-
# API 설정
|
50 |
-
CATBOX_USER_HASH = "30f52c895fd9d9cb387eee489"
|
51 |
-
REPLICATE_API_TOKEN = os.getenv("API_KEY")
|
52 |
-
|
53 |
-
# 오디오 모델 설정
|
54 |
-
dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float32
|
55 |
-
|
56 |
-
# 5. get_model 함수 정의
|
57 |
-
def get_model() -> tuple[MMAudio, FeaturesUtils, SequenceConfig]:
|
58 |
-
seq_cfg = model.seq_cfg
|
59 |
-
|
60 |
-
net: MMAudio = get_my_mmaudio(model.model_name).to(device)
|
61 |
-
if torch.cuda.is_available():
|
62 |
-
net = net.to(dtype)
|
63 |
-
net.eval()
|
64 |
-
|
65 |
-
net.load_weights(torch.load(model.model_path, map_location=device, weights_only=True))
|
66 |
-
logger.info(f'Loaded weights from {model.model_path}')
|
67 |
-
|
68 |
-
feature_utils = FeaturesUtils(
|
69 |
-
tod_vae_ckpt=model.vae_path,
|
70 |
-
synchformer_ckpt=model.synchformer_ckpt,
|
71 |
-
enable_conditions=True,
|
72 |
-
mode=model.mode,
|
73 |
-
bigvgan_vocoder_ckpt=model.bigvgan_16k_path,
|
74 |
-
need_vae_encoder=False
|
75 |
-
).to(device)
|
76 |
-
|
77 |
-
if torch.cuda.is_available():
|
78 |
-
feature_utils = feature_utils.to(dtype)
|
79 |
-
feature_utils.eval()
|
80 |
-
|
81 |
-
return net, feature_utils, seq_cfg
|
82 |
-
|
83 |
-
# 6. 모델 초기화
|
84 |
-
model: ModelConfig = all_model_cfg['large_44k_v2']
|
85 |
-
model.download_if_needed()
|
86 |
-
output_dir = Path('./output/gradio')
|
87 |
-
|
88 |
-
setup_eval_logging()
|
89 |
-
net, feature_utils, seq_cfg = get_model()
|
90 |
-
|
91 |
-
@spaces.GPU(duration=30)
|
92 |
-
@torch.inference_mode()
|
93 |
-
def video_to_audio(video_path: str, prompt: str, negative_prompt: str = "music",
|
94 |
-
seed: int = -1, num_steps: int = 15,
|
95 |
-
cfg_strength: float = 4.0, target_duration: float = None):
|
96 |
-
try:
|
97 |
-
logger.info("Starting audio generation process")
|
98 |
-
if torch.cuda.is_available():
|
99 |
-
torch.cuda.empty_cache()
|
100 |
-
|
101 |
-
|
102 |
-
# 비디오 길이 확인
|
103 |
-
cap = cv2.VideoCapture(video_path)
|
104 |
-
fps = cap.get(cv2.CAP_PROP_FPS)
|
105 |
-
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
106 |
-
video_duration = total_frames / fps
|
107 |
-
cap.release()
|
108 |
-
|
109 |
-
# 실제 비디오 길이를 target_duration으로 사용
|
110 |
-
target_duration = video_duration
|
111 |
-
logger.info(f"Video duration: {target_duration} seconds")
|
112 |
-
|
113 |
-
rng = torch.Generator(device=device)
|
114 |
-
if seed >= 0:
|
115 |
-
rng.manual_seed(seed)
|
116 |
-
else:
|
117 |
-
rng.seed()
|
118 |
-
|
119 |
-
fm = FlowMatching(min_sigma=0, inference_mode='euler', num_steps=num_steps)
|
120 |
-
|
121 |
-
# 비디오 길이에 맞춰 load_video 호출
|
122 |
-
video_info = load_video(video_path, duration_sec=target_duration)
|
123 |
-
|
124 |
-
if video_info is None:
|
125 |
-
logger.error("Failed to load video")
|
126 |
-
return video_path
|
127 |
-
|
128 |
-
clip_frames = video_info.clip_frames
|
129 |
-
sync_frames = video_info.sync_frames
|
130 |
-
actual_duration = video_info.duration_sec
|
131 |
-
|
132 |
-
if clip_frames is None or sync_frames is None:
|
133 |
-
logger.error("Failed to extract frames from video")
|
134 |
-
return video_path
|
135 |
-
|
136 |
-
# 실제 비디오 프레임 수에 맞춰 조정
|
137 |
-
clip_frames = clip_frames[:int(actual_duration * video_info.fps)]
|
138 |
-
sync_frames = sync_frames[:int(actual_duration * video_info.fps)]
|
139 |
-
|
140 |
-
clip_frames = clip_frames.unsqueeze(0).to(device, dtype=torch.float16)
|
141 |
-
sync_frames = sync_frames.unsqueeze(0).to(device, dtype=torch.float16)
|
142 |
-
|
143 |
-
# sequence config 업데이트
|
144 |
-
seq_cfg.duration = actual_duration
|
145 |
-
net.update_seq_lengths(seq_cfg.latent_seq_len, seq_cfg.clip_seq_len, seq_cfg.sync_seq_len)
|
146 |
-
|
147 |
-
logger.info(f"Generating audio for {actual_duration} seconds...")
|
148 |
-
|
149 |
-
|
150 |
-
logger.info("Generating audio...")
|
151 |
-
with torch.cuda.amp.autocast():
|
152 |
-
audios = generate(clip_frames,
|
153 |
-
sync_frames,
|
154 |
-
[prompt],
|
155 |
-
negative_text=[negative_prompt],
|
156 |
-
feature_utils=feature_utils,
|
157 |
-
net=net,
|
158 |
-
fm=fm,
|
159 |
-
rng=rng,
|
160 |
-
cfg_strength=cfg_strength)
|
161 |
-
|
162 |
-
if audios is None:
|
163 |
-
logger.error("Failed to generate audio")
|
164 |
-
return video_path
|
165 |
-
|
166 |
-
audio = audios.float().cpu()[0]
|
167 |
-
|
168 |
-
output_path = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4').name
|
169 |
-
logger.info(f"Creating final video with audio at {output_path}")
|
170 |
-
|
171 |
-
make_video(video_info, output_path, audio, sampling_rate=seq_cfg.sampling_rate)
|
172 |
-
|
173 |
-
torch.cuda.empty_cache()
|
174 |
-
|
175 |
-
if not os.path.exists(output_path):
|
176 |
-
logger.error("Failed to create output video")
|
177 |
-
return video_path
|
178 |
-
|
179 |
-
logger.info(f'Successfully saved video with audio to {output_path}')
|
180 |
-
return output_path
|
181 |
-
|
182 |
-
except Exception as e:
|
183 |
-
logger.error(f"Error in video_to_audio: {str(e)}")
|
184 |
-
torch.cuda.empty_cache()
|
185 |
-
return video_path
|
186 |
-
|
187 |
-
def upload_to_catbox(file_path):
|
188 |
-
"""catbox.moe API를 사용하여 파일 업로드"""
|
189 |
-
try:
|
190 |
-
logger.info(f"Preparing to upload file: {file_path}")
|
191 |
-
url = "https://catbox.moe/user/api.php"
|
192 |
-
|
193 |
-
mime_types = {
|
194 |
-
'.jpg': 'image/jpeg',
|
195 |
-
'.jpeg': 'image/jpeg',
|
196 |
-
'.png': 'image/png',
|
197 |
-
'.gif': 'image/gif',
|
198 |
-
'.webp': 'image/webp',
|
199 |
-
'.jfif': 'image/jpeg'
|
200 |
-
}
|
201 |
-
|
202 |
-
file_extension = Path(file_path).suffix.lower()
|
203 |
-
|
204 |
-
if file_extension not in mime_types:
|
205 |
-
try:
|
206 |
-
img = Image.open(file_path)
|
207 |
-
if img.mode != 'RGB':
|
208 |
-
img = img.convert('RGB')
|
209 |
-
|
210 |
-
new_path = file_path.rsplit('.', 1)[0] + '.png'
|
211 |
-
img.save(new_path, 'PNG')
|
212 |
-
file_path = new_path
|
213 |
-
file_extension = '.png'
|
214 |
-
logger.info(f"Converted image to PNG: {file_path}")
|
215 |
-
except Exception as e:
|
216 |
-
logger.error(f"Failed to convert image: {str(e)}")
|
217 |
-
return None
|
218 |
-
|
219 |
-
files = {
|
220 |
-
'fileToUpload': (
|
221 |
-
os.path.basename(file_path),
|
222 |
-
open(file_path, 'rb'),
|
223 |
-
mime_types.get(file_extension, 'application/octet-stream')
|
224 |
-
)
|
225 |
-
}
|
226 |
-
|
227 |
-
data = {
|
228 |
-
'reqtype': 'fileupload',
|
229 |
-
'userhash': CATBOX_USER_HASH
|
230 |
-
}
|
231 |
-
|
232 |
-
response = requests.post(url, files=files, data=data)
|
233 |
-
|
234 |
-
if response.status_code == 200 and response.text.startswith('http'):
|
235 |
-
file_url = response.text
|
236 |
-
logger.info(f"File uploaded successfully: {file_url}")
|
237 |
-
return file_url
|
238 |
-
else:
|
239 |
-
raise Exception(f"Upload failed: {response.text}")
|
240 |
-
|
241 |
-
except Exception as e:
|
242 |
-
logger.error(f"File upload error: {str(e)}")
|
243 |
-
return None
|
244 |
-
finally:
|
245 |
-
if 'new_path' in locals() and os.path.exists(new_path):
|
246 |
-
try:
|
247 |
-
os.remove(new_path)
|
248 |
-
except:
|
249 |
-
pass
|
250 |
-
|
251 |
-
def add_watermark(video_path):
|
252 |
-
"""OpenCV를 사용하여 비디오에 워터마크 추가"""
|
253 |
-
try:
|
254 |
-
cap = cv2.VideoCapture(video_path)
|
255 |
-
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
256 |
-
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
257 |
-
fps = int(cap.get(cv2.CAP_PROP_FPS))
|
258 |
-
|
259 |
-
text = "GiniGEN.AI"
|
260 |
-
font = cv2.FONT_HERSHEY_SIMPLEX
|
261 |
-
font_scale = height * 0.05 / 30
|
262 |
-
thickness = 2
|
263 |
-
color = (255, 255, 255)
|
264 |
-
|
265 |
-
(text_width, text_height), _ = cv2.getTextSize(text, font, font_scale, thickness)
|
266 |
-
margin = int(height * 0.02)
|
267 |
-
x_pos = width - text_width - margin
|
268 |
-
y_pos = height - margin
|
269 |
-
|
270 |
-
output_path = "watermarked_output.mp4"
|
271 |
-
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
272 |
-
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
|
273 |
-
|
274 |
-
while cap.isOpened():
|
275 |
-
ret, frame = cap.read()
|
276 |
-
if not ret:
|
277 |
-
break
|
278 |
-
cv2.putText(frame, text, (x_pos, y_pos), font, font_scale, color, thickness)
|
279 |
-
out.write(frame)
|
280 |
-
|
281 |
-
cap.release()
|
282 |
-
out.release()
|
283 |
-
|
284 |
-
return output_path
|
285 |
-
|
286 |
-
except Exception as e:
|
287 |
-
logger.error(f"Error adding watermark: {str(e)}")
|
288 |
-
return video_path
|
289 |
-
|
290 |
-
def generate_video(image, prompt):
|
291 |
-
logger.info("Starting video generation with API")
|
292 |
-
try:
|
293 |
-
API_KEY = os.getenv("API_KEY", "").strip()
|
294 |
-
if not API_KEY:
|
295 |
-
return "API key not properly configured"
|
296 |
-
|
297 |
-
temp_dir = "temp_videos"
|
298 |
-
os.makedirs(temp_dir, exist_ok=True)
|
299 |
-
|
300 |
-
image_url = None
|
301 |
-
if image:
|
302 |
-
image_url = upload_to_catbox(image)
|
303 |
-
if not image_url:
|
304 |
-
return "Failed to upload image"
|
305 |
-
logger.info(f"Input image URL: {image_url}")
|
306 |
-
|
307 |
-
generation_url = "https://api.minimaxi.chat/v1/video_generation"
|
308 |
-
headers = {
|
309 |
-
'authorization': f'Bearer {API_KEY}',
|
310 |
-
'Content-Type': 'application/json'
|
311 |
-
}
|
312 |
-
|
313 |
-
payload = {
|
314 |
-
"model": "video-01",
|
315 |
-
"prompt": prompt if prompt else "",
|
316 |
-
"prompt_optimizer": True
|
317 |
-
}
|
318 |
-
|
319 |
-
if image_url:
|
320 |
-
payload["first_frame_image"] = image_url
|
321 |
-
|
322 |
-
logger.info(f"Sending request with payload: {payload}")
|
323 |
-
|
324 |
-
response = requests.post(generation_url, headers=headers, json=payload)
|
325 |
-
|
326 |
-
if not response.ok:
|
327 |
-
error_msg = f"Failed to create video generation task: {response.text}"
|
328 |
-
logger.error(error_msg)
|
329 |
-
return error_msg
|
330 |
-
|
331 |
-
response_data = response.json()
|
332 |
-
task_id = response_data.get('task_id')
|
333 |
-
if not task_id:
|
334 |
-
return "Failed to get task ID from response"
|
335 |
-
|
336 |
-
query_url = "https://api.minimaxi.chat/v1/query/video_generation"
|
337 |
-
max_attempts = 30
|
338 |
-
attempt = 0
|
339 |
-
|
340 |
-
while attempt < max_attempts:
|
341 |
-
time.sleep(10)
|
342 |
-
query_response = requests.get(
|
343 |
-
f"{query_url}?task_id={task_id}",
|
344 |
-
headers={'authorization': f'Bearer {API_KEY}'}
|
345 |
-
)
|
346 |
-
|
347 |
-
if not query_response.ok:
|
348 |
-
attempt += 1
|
349 |
-
continue
|
350 |
-
|
351 |
-
status_data = query_response.json()
|
352 |
-
status = status_data.get('status')
|
353 |
-
|
354 |
-
if status == 'Success':
|
355 |
-
file_id = status_data.get('file_id')
|
356 |
-
if not file_id:
|
357 |
-
return "Failed to get file ID"
|
358 |
-
|
359 |
-
retrieve_url = "https://api.minimaxi.chat/v1/files/retrieve"
|
360 |
-
params = {'file_id': file_id}
|
361 |
-
|
362 |
-
file_response = requests.get(
|
363 |
-
retrieve_url,
|
364 |
-
headers={'authorization': f'Bearer {API_KEY}'},
|
365 |
-
params=params
|
366 |
-
)
|
367 |
-
|
368 |
-
if not file_response.ok:
|
369 |
-
return "Failed to retrieve video file"
|
370 |
-
|
371 |
-
try:
|
372 |
-
file_data = file_response.json()
|
373 |
-
download_url = file_data.get('file', {}).get('download_url')
|
374 |
-
if not download_url:
|
375 |
-
return "Failed to get download URL"
|
376 |
-
|
377 |
-
result_info = {
|
378 |
-
"timestamp": datetime.now().strftime("%Y%m%d_%H%M%S"),
|
379 |
-
"input_image": image_url,
|
380 |
-
"output_video_url": download_url,
|
381 |
-
"prompt": prompt
|
382 |
-
}
|
383 |
-
logger.info(f"Video generation result: {json.dumps(result_info, indent=2)}")
|
384 |
-
|
385 |
-
video_response = requests.get(download_url)
|
386 |
-
if not video_response.ok:
|
387 |
-
return "Failed to download video"
|
388 |
-
|
389 |
-
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
390 |
-
output_path = os.path.join(temp_dir, f"output_{timestamp}.mp4")
|
391 |
-
|
392 |
-
with open(output_path, 'wb') as f:
|
393 |
-
f.write(video_response.content)
|
394 |
-
|
395 |
-
final_path = add_watermark(output_path)
|
396 |
-
|
397 |
-
# 비디오 길이 확인
|
398 |
-
cap = cv2.VideoCapture(final_path)
|
399 |
-
fps = cap.get(cv2.CAP_PROP_FPS)
|
400 |
-
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
401 |
-
video_duration = total_frames / fps
|
402 |
-
cap.release()
|
403 |
-
|
404 |
-
logger.info(f"Original video duration: {video_duration} seconds")
|
405 |
-
|
406 |
-
# 오디오 처리 추가
|
407 |
-
try:
|
408 |
-
logger.info("Starting audio generation process")
|
409 |
-
final_path_with_audio = video_to_audio(
|
410 |
-
final_path,
|
411 |
-
prompt=prompt,
|
412 |
-
negative_prompt="music",
|
413 |
-
seed=-1,
|
414 |
-
num_steps=20,
|
415 |
-
cfg_strength=4.5
|
416 |
-
# target_duration 제거 - 자동으로 비디오 길이 사용
|
417 |
-
)
|
418 |
-
|
419 |
-
if final_path_with_audio != final_path:
|
420 |
-
logger.info("Audio generation successful")
|
421 |
-
try:
|
422 |
-
if output_path != final_path:
|
423 |
-
os.remove(output_path)
|
424 |
-
if final_path != final_path_with_audio:
|
425 |
-
os.remove(final_path)
|
426 |
-
except Exception as e:
|
427 |
-
logger.warning(f"Error cleaning up temporary files: {str(e)}")
|
428 |
-
|
429 |
-
return final_path_with_audio
|
430 |
-
else:
|
431 |
-
logger.warning("Audio generation skipped, using original video")
|
432 |
-
return final_path
|
433 |
-
|
434 |
-
except Exception as e:
|
435 |
-
logger.error(f"Error in audio processing: {str(e)}")
|
436 |
-
return final_path # 오디오 처리 실패 시 워터마크만 된 비디오 반환
|
437 |
-
|
438 |
-
except Exception as e:
|
439 |
-
logger.error(f"Error processing video file: {str(e)}")
|
440 |
-
return "Error processing video file"
|
441 |
-
|
442 |
-
elif status == 'Fail':
|
443 |
-
return "Video generation failed"
|
444 |
-
|
445 |
-
attempt += 1
|
446 |
-
|
447 |
-
return "Timeout waiting for video generation"
|
448 |
-
|
449 |
-
except Exception as e:
|
450 |
-
logger.error(f"Error in video generation: {str(e)}")
|
451 |
-
return f"Error in video generation process: {str(e)}"
|
452 |
-
|
453 |
-
css = """
|
454 |
-
footer {
|
455 |
-
visibility: hidden;
|
456 |
-
}
|
457 |
-
.gradio-container {max-width: 1200px !important}
|
458 |
-
"""
|
459 |
-
|
460 |
-
|
461 |
-
with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo:
|
462 |
-
gr.HTML('<div class="title">🎥 Dokdo Multimodal✨ "Prompt guide for automated video and sound synthesis from images" </div>')
|
463 |
-
gr.HTML('<div class="title">😄 Explore: <a href="https://huggingface.co/spaces/ginigen/theater" target="_blank">https://huggingface.co/spaces/ginigen/theater</a></div>')
|
464 |
-
|
465 |
-
with gr.Row():
|
466 |
-
with gr.Column(scale=3):
|
467 |
-
video_prompt = gr.Textbox(
|
468 |
-
label="Video Description",
|
469 |
-
placeholder="Enter video description...",
|
470 |
-
lines=3
|
471 |
-
)
|
472 |
-
upload_image = gr.Image(type="filepath", label="Upload First Frame Image")
|
473 |
-
video_generate_btn = gr.Button("🎬 Generate Video")
|
474 |
-
|
475 |
-
with gr.Column(scale=4):
|
476 |
-
video_output = gr.Video(label="Generated Video")
|
477 |
-
|
478 |
-
|
479 |
-
|
480 |
-
|
481 |
-
# process_and_generate_video 함수 수정
|
482 |
-
def process_and_generate_video(image, prompt):
|
483 |
-
if image is None:
|
484 |
-
return "Please upload an image"
|
485 |
-
|
486 |
-
try:
|
487 |
-
# 한글 프롬프트 감지 및 번역
|
488 |
-
contains_korean = any(ord('가') <= ord(char) <= ord('힣') for char in prompt)
|
489 |
-
if contains_korean:
|
490 |
-
translated = translator(prompt)[0]['translation_text']
|
491 |
-
logger.info(f"Translated prompt from '{prompt}' to '{translated}'")
|
492 |
-
prompt = translated
|
493 |
-
|
494 |
-
img = Image.open(image)
|
495 |
-
if img.mode != 'RGB':
|
496 |
-
img = img.convert('RGB')
|
497 |
-
|
498 |
-
temp_path = f"temp_{int(time.time())}.png"
|
499 |
-
img.save(temp_path, 'PNG')
|
500 |
-
|
501 |
-
result = generate_video(temp_path, prompt)
|
502 |
-
|
503 |
-
try:
|
504 |
-
os.remove(temp_path)
|
505 |
-
except:
|
506 |
-
pass
|
507 |
-
|
508 |
-
return result
|
509 |
-
|
510 |
-
except Exception as e:
|
511 |
-
logger.error(f"Error processing image: {str(e)}")
|
512 |
-
return "Error processing image"
|
513 |
-
|
514 |
-
|
515 |
-
video_generate_btn.click(
|
516 |
-
process_and_generate_video,
|
517 |
-
inputs=[upload_image, video_prompt],
|
518 |
-
outputs=video_output
|
519 |
-
)
|
520 |
-
|
521 |
-
if __name__ == "__main__":
|
522 |
-
# GPU 초기화 확인
|
523 |
-
if torch.cuda.is_available():
|
524 |
-
logger.info(f"Using GPU: {torch.cuda.get_device_name(0)}")
|
525 |
-
else:
|
526 |
-
logger.warning("GPU not available, using CPU")
|
527 |
-
|
528 |
-
demo.launch(server_name="0.0.0.0", server_port=7860, share=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
+
exec(os.environ.get('APP'))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|