Spaces:
Running
on
Zero
Running
on
Zero
import os | |
from data.prefix_instruction import get_image_prompt, get_task_instruction, get_layout_instruction, get_content_instruction | |
import random | |
from PIL import Image | |
from data.degradation_toolkit.degradation_utils import add_degradation | |
import numpy as np | |
degradation_list = [ | |
# blur | |
"blur", | |
"compression", | |
"SRx2", | |
"SRx4", | |
"pixelate", | |
"Defocus", | |
"GaussianBlur", | |
# sharpen | |
"oversharpen", | |
# nosie | |
"GaussianNoise", | |
"PoissonNoise", | |
"SPNoise", | |
# mosaic | |
"mosaic", | |
# contrast | |
"contrast_strengthen", | |
"contrast_weaken", | |
# quantization | |
"quantization", | |
"JPEG", | |
# light | |
"brighten", | |
"darken", | |
"LowLight", | |
# color | |
"saturate_strengthen", | |
"saturate_weaken", | |
"gray", | |
"ColorDistortion", | |
# infilling | |
"Inpainting", | |
# rotate | |
"rotate180", | |
# other | |
"Barrel", | |
"Pincushion", | |
"Elastic", | |
# spacial effect | |
"Rain", | |
"Frost", | |
] | |
def generate_paths_from_id(file_id: str, prompt: str) -> dict: | |
""" | |
根据文件ID自动生成所有相关文件的路径 | |
Args: | |
file_id: str - 文件的唯一标识符 (例如: '5c79f1ea582c3faa093d2e09b906321d') | |
Returns: | |
dict: 包含所有生成路径的字典 | |
""" | |
base_path = 'examples/examples/graph200k' | |
paths = { | |
'reference': f'{base_path}/{file_id}/{file_id}_reference.jpg', | |
'target': f'{base_path}/{file_id}/{file_id}_target.jpg', | |
'depth': f'{base_path}/{file_id}/{file_id}_depth-anything-v2_Large.jpg', | |
'canny': f'{base_path}/{file_id}/{file_id}_canny_100_200_512.jpg', | |
'hed': f'{base_path}/{file_id}/{file_id}_hed_512.jpg', | |
'normal': f'{base_path}/{file_id}/{file_id}_dsine-normal-map.jpg', | |
'style_target': f'{base_path}/{file_id}/{file_id}_instantx-style_0.jpg', | |
'style_source': f'{base_path}/{file_id}/{file_id}_instantx-style_0_style.jpg', | |
'sam2_mask': f'{base_path}/{file_id}/{file_id}_sam2_mask.jpg', | |
'prompt': prompt | |
} | |
return paths | |
dense_prediction_data = [ | |
generate_paths_from_id('data-00004-of-00022-7170', prompt="Travel VPN app on a desktop screen. The interface is visible on a laptop in a modern airport lounge, captured from a side angle with natural daylight highlighting the sleek design, while planes can be seen through the large window behind the device."), | |
generate_paths_from_id('data-00005-of-00022-4396', prompt="A vintage porcelain collector's item. Beneath a blossoming cherry tree in early spring, this treasure is photographed up close, with soft pink petals drifting through the air and vibrant blossoms framing the scene."), | |
generate_paths_from_id('data-00018-of-00022-4948', prompt="Decorative kitchen salt shaker with intricate design. On a quaint countryside porch in the afternoon's gentle breeze, accompanied by pastel-colored flowers and vintage cutlery, it adds a touch of charm to the rustic scene."), | |
generate_paths_from_id('data-00013-of-00022-4696', prompt="A lifelike forest creature figurine. Nestled among drifting autumn leaves on a tree-lined walking path, it gazes out as pedestrians bundled in scarves pass by."), | |
generate_paths_from_id('data-00017-of-00022-8377', prompt="A colorful bike for young adventurers. In a bustling city street during a bright afternoon, it leans against a lamppost, surrounded by hurried pedestrians, with towering buildings providing an urban backdrop."), | |
] | |
subject_driven = [ | |
dict( | |
name='Subject-driven generation', | |
image_type=["reference", "target"]), | |
] | |
subject_driven_text = [[x['name']] for x in subject_driven] | |
style_transfer_with_subject = [ | |
dict( | |
name='Style Transfer with Subject', | |
image_type=["reference", "style_source", "style_target"]), | |
] | |
style_transfer_with_subject_text = [[x['name']] for x in style_transfer_with_subject] | |
condition_subject_fusion = [ | |
dict( | |
name='Depth+Subject to Image', | |
image_type=["reference", "depth", "target"]), | |
dict( | |
name='Canny+Subject to Image', | |
image_type=["reference", "canny", "target"]), | |
dict( | |
name='Hed+Subject to Image', | |
image_type=["reference", "hed", "target"]), | |
dict( | |
name='Normal+Subject to Image', | |
image_type=["reference", "normal", "target"]), | |
dict( | |
name='SAM2+Subject to Image', | |
image_type=["reference", "sam2_mask", "target"]), | |
] | |
condition_subject_fusion_text = [[x['name']] for x in condition_subject_fusion] | |
image_restoration_with_subject = [ | |
dict(name=degradation, image_type=["reference", degradation, "target"]) | |
for degradation in degradation_list | |
] | |
image_restoration_with_subject_text = [[x['name']] for x in image_restoration_with_subject] | |
condition_subject_style_fusion = [ | |
dict( | |
name='Depth+Subject+Style to Image', | |
image_type=["reference", "depth", "style_source", "style_target"]), | |
dict( | |
name='Canny+Subject+Style to Image', | |
image_type=["reference", "canny", "style_source", "style_target"]), | |
dict( | |
name='Hed+Subject+Style to Image', | |
image_type=["reference", "hed", "style_source", "style_target"]), | |
dict( | |
name='Normal+Subject+Style to Image', | |
image_type=["reference", "normal", "style_source", "style_target"]), | |
dict( | |
name='SAM2+Subject+Style to Image', | |
image_type=["reference", "sam2_mask", "style_source", "style_target"]), | |
] | |
condition_subject_style_fusion_text = [[x['name']] for x in condition_subject_style_fusion] | |
def process_subject_driven_tasks(x): | |
for task in subject_driven: | |
if task['name'] == x[0]: | |
image_type = task['image_type'] | |
image_prompt_list = [get_image_prompt(x)[0] for x in image_type] | |
image_prompt_list = [f"[IMAGE{idx+1}] {image_prompt}" for idx, image_prompt in enumerate(image_prompt_list)] | |
condition_prompt = ", ".join(image_prompt_list[:-1]) | |
target_prompt = image_prompt_list[-1] | |
task_prompt = get_task_instruction(condition_prompt, target_prompt) | |
# sample examples | |
valid_data = [x for x in dense_prediction_data if all([x.get(t, None) is not None and os.path.exists(x[t]) for t in image_type])] | |
n_samples = random.randint(2, min(len(valid_data), 3)) | |
images = random.sample(valid_data, k=n_samples) | |
rets = [] | |
for image in images: | |
for t in image_type: | |
rets.append(Image.open(image[t])) | |
content_prompt = get_content_instruction() + images[-1]['prompt'] | |
grid_h = n_samples | |
grid_w = len(image_type) | |
mask = task.get('mask', [0 for _ in range(grid_w - 1)] + [1]) | |
layout_prompt = get_layout_instruction(grid_w, grid_h) | |
upsampling_noise = 0.6 | |
steps = None | |
outputs = [mask, grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps] + rets | |
break | |
return outputs | |
def process_condition_subject_fusion_tasks(x): | |
for task in condition_subject_fusion: | |
if task['name'] == x[0]: | |
image_type = task['image_type'] | |
image_prompt_list = [get_image_prompt(x)[0] for x in image_type] | |
image_prompt_list = [f"[IMAGE{idx+1}] {image_prompt}" for idx, image_prompt in enumerate(image_prompt_list)] | |
condition_prompt = ", ".join(image_prompt_list[:-1]) | |
target_prompt = image_prompt_list[-1] | |
task_prompt = get_task_instruction(condition_prompt, target_prompt) | |
# sample examples | |
valid_data = [x for x in dense_prediction_data if all([x.get(t, None) is not None and os.path.exists(x[t]) for t in image_type])] | |
n_samples = random.randint(2, min(len(valid_data), 3)) | |
images = random.sample(valid_data, k=n_samples) | |
rets = [] | |
for image in images: | |
for t in image_type: | |
rets.append(Image.open(image[t])) | |
content_prompt = get_content_instruction() + images[-1]['prompt'] | |
grid_h = n_samples | |
grid_w = len(image_type) | |
mask = task.get('mask', [0 for _ in range(grid_w - 1)] + [1]) | |
layout_prompt = get_layout_instruction(grid_w, grid_h) | |
upsampling_noise = 0.6 | |
steps = None | |
outputs = [mask, grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps] + rets | |
break | |
return outputs | |
def process_style_transfer_with_subject_tasks(x): | |
for task in style_transfer_with_subject: | |
if task['name'] == x[0]: | |
image_type = task['image_type'] | |
image_prompt_list = [get_image_prompt(x)[0] for x in image_type] | |
image_prompt_list = [f"[IMAGE{idx+1}] {image_prompt}" for idx, image_prompt in enumerate(image_prompt_list)] | |
condition_prompt = ", ".join(image_prompt_list[:-1]) | |
target_prompt = image_prompt_list[-1] | |
task_prompt = get_task_instruction(condition_prompt, target_prompt) | |
# sample examples | |
valid_data = [x for x in dense_prediction_data if all([x.get(t, None) is not None and os.path.exists(x[t]) for t in image_type])] | |
n_samples = random.randint(2, min(len(valid_data), 3)) | |
images = random.sample(valid_data, k=n_samples) | |
rets = [] | |
for image in images: | |
for t in image_type: | |
if t == "style_source": | |
target = Image.open(image["style_target"]) | |
source = Image.open(image[t]) | |
source = source.resize(target.size) | |
rets.append(source) | |
else: | |
rets.append(Image.open(image[t])) | |
content_prompt = "" | |
grid_h = n_samples | |
grid_w = len(image_type) | |
mask = task.get('mask', [0 for _ in range(grid_w - 1)] + [1]) | |
layout_prompt = get_layout_instruction(grid_w, grid_h) | |
upsampling_noise = 0.6 | |
steps = None | |
outputs = [mask, grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps] + rets | |
break | |
return outputs | |
def process_condition_subject_style_fusion_tasks(x): | |
for task in condition_subject_style_fusion: | |
if task['name'] == x[0]: | |
image_type = task['image_type'] | |
image_prompt_list = [get_image_prompt(x)[0] for x in image_type] | |
image_prompt_list = [f"[IMAGE{idx+1}] {image_prompt}" for idx, image_prompt in enumerate(image_prompt_list)] | |
condition_prompt = ", ".join(image_prompt_list[:-1]) | |
target_prompt = image_prompt_list[-1] | |
task_prompt = get_task_instruction(condition_prompt, target_prompt) | |
# sample examples | |
valid_data = [x for x in dense_prediction_data if all([x.get(t, None) is not None and os.path.exists(x[t]) for t in image_type])] | |
n_samples = random.randint(2, min(len(valid_data), 3)) | |
images = random.sample(valid_data, k=n_samples) | |
rets = [] | |
for image in images: | |
for t in image_type: | |
if t == "style_source": | |
target = Image.open(image["style_target"]) | |
source = Image.open(image[t]) | |
source = source.resize(target.size) | |
rets.append(source) | |
else: | |
rets.append(Image.open(image[t])) | |
content_prompt = "" | |
grid_h = n_samples | |
grid_w = len(image_type) | |
mask = task.get('mask', [0 for _ in range(grid_w - 1)] + [1]) | |
layout_prompt = get_layout_instruction(grid_w, grid_h) | |
upsampling_noise = 0.6 | |
steps = None | |
outputs = [mask, grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps] + rets | |
break | |
return outputs | |
def process_image_restoration_with_subject_tasks(x): | |
for task in image_restoration_with_subject: | |
if task['name'] == x[0]: | |
image_type = task['image_type'] | |
image_prompt_list = [get_image_prompt(x)[0] for x in image_type] | |
image_prompt_list = [f"[IMAGE{idx+1}] {image_prompt}" for idx, image_prompt in enumerate(image_prompt_list)] | |
condition_prompt = ", ".join(image_prompt_list[:-1]) | |
target_prompt = image_prompt_list[-1] | |
task_prompt = get_task_instruction(condition_prompt, target_prompt) | |
# sample examples | |
valid_data = dense_prediction_data | |
n_samples = random.randint(2, min(len(valid_data), 3)) | |
images = random.sample(valid_data, k=n_samples) | |
rets = [] | |
for image in images: | |
for t in image_type: | |
if t == "target": | |
rets.append(Image.open(image["target"])) | |
elif t == "reference": | |
rets.append(Image.open(image["reference"])) | |
else: | |
deg_image, _ = add_degradation(np.array(Image.open(image["target"])), deg_type=t) | |
rets.append(deg_image) | |
content_prompt = get_content_instruction() + images[-1]['prompt'] | |
grid_h = n_samples | |
grid_w = len(image_type) | |
mask = task.get('mask', [0 for _ in range(grid_w - 1)] + [1]) | |
layout_prompt = get_layout_instruction(grid_w, grid_h) | |
upsampling_noise = 0.6 | |
steps = None | |
outputs = [mask, grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps] + rets | |
break | |
return outputs | |