Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright (c) 2024 NVIDIA CORPORATION. | |
| # Licensed under the MIT license. | |
| import torch | |
| import torch.nn as nn | |
| from alias_free_activation.torch.resample import UpSample1d, DownSample1d | |
| # load fused CUDA kernel: this enables importing anti_alias_activation_cuda | |
| from alias_free_activation.cuda import load | |
| anti_alias_activation_cuda = load.load() | |
| class FusedAntiAliasActivation(torch.autograd.Function): | |
| """ | |
| Assumes filter size 12, replication padding on upsampling/downsampling, and logscale alpha/beta parameters as inputs. | |
| The hyperparameters are hard-coded in the kernel to maximize speed. | |
| NOTE: The fused kenrel is incorrect for Activation1d with different hyperparameters. | |
| """ | |
| def forward(ctx, inputs, up_ftr, down_ftr, alpha, beta): | |
| activation_results = anti_alias_activation_cuda.forward( | |
| inputs, up_ftr, down_ftr, alpha, beta | |
| ) | |
| return activation_results | |
| def backward(ctx, output_grads): | |
| raise NotImplementedError | |
| return output_grads, None, None | |
| class Activation1d(nn.Module): | |
| def __init__( | |
| self, | |
| activation, | |
| up_ratio: int = 2, | |
| down_ratio: int = 2, | |
| up_kernel_size: int = 12, | |
| down_kernel_size: int = 12, | |
| fused: bool = True, | |
| ): | |
| super().__init__() | |
| self.up_ratio = up_ratio | |
| self.down_ratio = down_ratio | |
| self.act = activation | |
| self.upsample = UpSample1d(up_ratio, up_kernel_size) | |
| self.downsample = DownSample1d(down_ratio, down_kernel_size) | |
| self.fused = fused # Whether to use fused CUDA kernel or not | |
| def forward(self, x): | |
| if not self.fused: | |
| x = self.upsample(x) | |
| x = self.act(x) | |
| x = self.downsample(x) | |
| return x | |
| else: | |
| if self.act.__class__.__name__ == "Snake": | |
| beta = self.act.alpha.data # Snake uses same params for alpha and beta | |
| else: | |
| beta = ( | |
| self.act.beta.data | |
| ) # Snakebeta uses different params for alpha and beta | |
| alpha = self.act.alpha.data | |
| if ( | |
| not self.act.alpha_logscale | |
| ): # Exp baked into cuda kernel, cancel it out with a log | |
| alpha = torch.log(alpha) | |
| beta = torch.log(beta) | |
| x = FusedAntiAliasActivation.apply( | |
| x, self.upsample.filter, self.downsample.lowpass.filter, alpha, beta | |
| ) | |
| return x | |