Spaces:
Running
on
Zero
Running
on
Zero
Delete app.py
Browse files
app.py
DELETED
@@ -1,916 +0,0 @@
|
|
1 |
-
# import os
|
2 |
-
import spaces
|
3 |
-
|
4 |
-
import time
|
5 |
-
import gradio as gr
|
6 |
-
import torch
|
7 |
-
from PIL import Image
|
8 |
-
from torchvision import transforms
|
9 |
-
from dataclasses import dataclass
|
10 |
-
import math
|
11 |
-
from typing import Callable
|
12 |
-
|
13 |
-
from tqdm import tqdm
|
14 |
-
import bitsandbytes as bnb
|
15 |
-
from bitsandbytes.nn.modules import Params4bit, QuantState
|
16 |
-
|
17 |
-
import torch
|
18 |
-
import random
|
19 |
-
from einops import rearrange, repeat
|
20 |
-
from diffusers import AutoencoderKL
|
21 |
-
from torch import Tensor, nn
|
22 |
-
from transformers import CLIPTextModel, CLIPTokenizer
|
23 |
-
from transformers import T5EncoderModel, T5Tokenizer
|
24 |
-
# from optimum.quanto import freeze, qfloat8, quantize
|
25 |
-
from transformers import pipeline
|
26 |
-
|
27 |
-
|
28 |
-
class HFEmbedder(nn.Module):
|
29 |
-
def __init__(self, version: str, max_length: int, **hf_kwargs):
|
30 |
-
super().__init__()
|
31 |
-
self.is_clip = version.startswith("openai")
|
32 |
-
self.max_length = max_length
|
33 |
-
self.output_key = "pooler_output" if self.is_clip else "last_hidden_state"
|
34 |
-
|
35 |
-
if self.is_clip:
|
36 |
-
self.tokenizer: CLIPTokenizer = CLIPTokenizer.from_pretrained(version, max_length=max_length)
|
37 |
-
self.hf_module: CLIPTextModel = CLIPTextModel.from_pretrained(version, **hf_kwargs)
|
38 |
-
else:
|
39 |
-
self.tokenizer: T5Tokenizer = T5Tokenizer.from_pretrained(version, max_length=max_length)
|
40 |
-
self.hf_module: T5EncoderModel = T5EncoderModel.from_pretrained(version, **hf_kwargs)
|
41 |
-
|
42 |
-
self.hf_module = self.hf_module.eval().requires_grad_(False)
|
43 |
-
|
44 |
-
def forward(self, text: list[str]) -> Tensor:
|
45 |
-
batch_encoding = self.tokenizer(
|
46 |
-
text,
|
47 |
-
truncation=True,
|
48 |
-
max_length=self.max_length,
|
49 |
-
return_length=False,
|
50 |
-
return_overflowing_tokens=False,
|
51 |
-
padding="max_length",
|
52 |
-
return_tensors="pt",
|
53 |
-
)
|
54 |
-
|
55 |
-
outputs = self.hf_module(
|
56 |
-
input_ids=batch_encoding["input_ids"].to(self.hf_module.device),
|
57 |
-
attention_mask=None,
|
58 |
-
output_hidden_states=False,
|
59 |
-
)
|
60 |
-
return outputs[self.output_key]
|
61 |
-
|
62 |
-
|
63 |
-
device = "cuda"
|
64 |
-
t5 = HFEmbedder("DeepFloyd/t5-v1_1-xxl", max_length=512, torch_dtype=torch.bfloat16).to(device)
|
65 |
-
clip = HFEmbedder("openai/clip-vit-large-patch14", max_length=77, torch_dtype=torch.bfloat16).to(device)
|
66 |
-
ae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=torch.bfloat16).to(device)
|
67 |
-
# quantize(t5, weights=qfloat8)
|
68 |
-
# freeze(t5)
|
69 |
-
|
70 |
-
|
71 |
-
# ---------------- NF4 ----------------
|
72 |
-
|
73 |
-
|
74 |
-
def functional_linear_4bits(x, weight, bias):
|
75 |
-
out = bnb.matmul_4bit(x, weight.t(), bias=bias, quant_state=weight.quant_state)
|
76 |
-
out = out.to(x)
|
77 |
-
return out
|
78 |
-
|
79 |
-
|
80 |
-
def copy_quant_state(state: QuantState, device: torch.device = None) -> QuantState:
|
81 |
-
if state is None:
|
82 |
-
return None
|
83 |
-
|
84 |
-
device = device or state.absmax.device
|
85 |
-
|
86 |
-
state2 = (
|
87 |
-
QuantState(
|
88 |
-
absmax=state.state2.absmax.to(device),
|
89 |
-
shape=state.state2.shape,
|
90 |
-
code=state.state2.code.to(device),
|
91 |
-
blocksize=state.state2.blocksize,
|
92 |
-
quant_type=state.state2.quant_type,
|
93 |
-
dtype=state.state2.dtype,
|
94 |
-
)
|
95 |
-
if state.nested
|
96 |
-
else None
|
97 |
-
)
|
98 |
-
|
99 |
-
return QuantState(
|
100 |
-
absmax=state.absmax.to(device),
|
101 |
-
shape=state.shape,
|
102 |
-
code=state.code.to(device),
|
103 |
-
blocksize=state.blocksize,
|
104 |
-
quant_type=state.quant_type,
|
105 |
-
dtype=state.dtype,
|
106 |
-
offset=state.offset.to(device) if state.nested else None,
|
107 |
-
state2=state2,
|
108 |
-
)
|
109 |
-
|
110 |
-
|
111 |
-
class ForgeParams4bit(Params4bit):
|
112 |
-
def to(self, *args, **kwargs):
|
113 |
-
device, dtype, non_blocking, convert_to_format = torch._C._nn._parse_to(*args, **kwargs)
|
114 |
-
if device is not None and device.type == "cuda" and not self.bnb_quantized:
|
115 |
-
return self._quantize(device)
|
116 |
-
else:
|
117 |
-
n = ForgeParams4bit(
|
118 |
-
torch.nn.Parameter.to(self, device=device, dtype=dtype, non_blocking=non_blocking),
|
119 |
-
requires_grad=self.requires_grad,
|
120 |
-
quant_state=copy_quant_state(self.quant_state, device),
|
121 |
-
# blocksize=self.blocksize,
|
122 |
-
# compress_statistics=self.compress_statistics,
|
123 |
-
compress_statistics=False,
|
124 |
-
blocksize=64,
|
125 |
-
quant_type=self.quant_type,
|
126 |
-
quant_storage=self.quant_storage,
|
127 |
-
bnb_quantized=self.bnb_quantized,
|
128 |
-
module=self.module
|
129 |
-
)
|
130 |
-
self.module.quant_state = n.quant_state
|
131 |
-
self.data = n.data
|
132 |
-
self.quant_state = n.quant_state
|
133 |
-
return n
|
134 |
-
|
135 |
-
|
136 |
-
class ForgeLoader4Bit(torch.nn.Module):
|
137 |
-
def __init__(self, *, device, dtype, quant_type, **kwargs):
|
138 |
-
super().__init__()
|
139 |
-
self.dummy = torch.nn.Parameter(torch.empty(1, device=device, dtype=dtype))
|
140 |
-
self.weight = None
|
141 |
-
self.quant_state = None
|
142 |
-
self.bias = None
|
143 |
-
self.quant_type = quant_type
|
144 |
-
|
145 |
-
def _save_to_state_dict(self, destination, prefix, keep_vars):
|
146 |
-
super()._save_to_state_dict(destination, prefix, keep_vars)
|
147 |
-
quant_state = getattr(self.weight, "quant_state", None)
|
148 |
-
if quant_state is not None:
|
149 |
-
for k, v in quant_state.as_dict(packed=True).items():
|
150 |
-
destination[prefix + "weight." + k] = v if keep_vars else v.detach()
|
151 |
-
return
|
152 |
-
|
153 |
-
def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs):
|
154 |
-
quant_state_keys = {k[len(prefix + "weight."):] for k in state_dict.keys() if k.startswith(prefix + "weight.")}
|
155 |
-
|
156 |
-
if any('bitsandbytes' in k for k in quant_state_keys):
|
157 |
-
quant_state_dict = {k: state_dict[prefix + "weight." + k] for k in quant_state_keys}
|
158 |
-
|
159 |
-
self.weight = ForgeParams4bit.from_prequantized(
|
160 |
-
data=state_dict[prefix + 'weight'],
|
161 |
-
quantized_stats=quant_state_dict,
|
162 |
-
requires_grad=False,
|
163 |
-
# device=self.dummy.device,
|
164 |
-
device=torch.device('cuda'),
|
165 |
-
module=self
|
166 |
-
)
|
167 |
-
self.quant_state = self.weight.quant_state
|
168 |
-
|
169 |
-
if prefix + 'bias' in state_dict:
|
170 |
-
self.bias = torch.nn.Parameter(state_dict[prefix + 'bias'].to(self.dummy))
|
171 |
-
|
172 |
-
del self.dummy
|
173 |
-
elif hasattr(self, 'dummy'):
|
174 |
-
if prefix + 'weight' in state_dict:
|
175 |
-
self.weight = ForgeParams4bit(
|
176 |
-
state_dict[prefix + 'weight'].to(self.dummy),
|
177 |
-
requires_grad=False,
|
178 |
-
compress_statistics=True,
|
179 |
-
quant_type=self.quant_type,
|
180 |
-
quant_storage=torch.uint8,
|
181 |
-
module=self,
|
182 |
-
)
|
183 |
-
self.quant_state = self.weight.quant_state
|
184 |
-
|
185 |
-
if prefix + 'bias' in state_dict:
|
186 |
-
self.bias = torch.nn.Parameter(state_dict[prefix + 'bias'].to(self.dummy))
|
187 |
-
|
188 |
-
del self.dummy
|
189 |
-
else:
|
190 |
-
super()._load_from_state_dict(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs)
|
191 |
-
|
192 |
-
|
193 |
-
class Linear(ForgeLoader4Bit):
|
194 |
-
def __init__(self, *args, device=None, dtype=None, **kwargs):
|
195 |
-
super().__init__(device=device, dtype=dtype, quant_type='nf4')
|
196 |
-
|
197 |
-
def forward(self, x):
|
198 |
-
self.weight.quant_state = self.quant_state
|
199 |
-
|
200 |
-
if self.bias is not None and self.bias.dtype != x.dtype:
|
201 |
-
# Maybe this can also be set to all non-bnb ops since the cost is very low.
|
202 |
-
# And it only invokes one time, and most linear does not have bias
|
203 |
-
self.bias.data = self.bias.data.to(x.dtype)
|
204 |
-
|
205 |
-
return functional_linear_4bits(x, self.weight, self.bias)
|
206 |
-
|
207 |
-
|
208 |
-
nn.Linear = Linear
|
209 |
-
|
210 |
-
|
211 |
-
# ---------------- Model ----------------
|
212 |
-
|
213 |
-
|
214 |
-
def attention(q: Tensor, k: Tensor, v: Tensor, pe: Tensor) -> Tensor:
|
215 |
-
q, k = apply_rope(q, k, pe)
|
216 |
-
|
217 |
-
x = torch.nn.functional.scaled_dot_product_attention(q, k, v)
|
218 |
-
# x = rearrange(x, "B H L D -> B L (H D)")
|
219 |
-
x = x.permute(0, 2, 1, 3).reshape(x.size(0), x.size(2), -1)
|
220 |
-
|
221 |
-
return x
|
222 |
-
|
223 |
-
|
224 |
-
def rope(pos, dim, theta):
|
225 |
-
scale = torch.arange(0, dim, 2, dtype=torch.float64, device=pos.device) / dim
|
226 |
-
omega = 1.0 / (theta ** scale)
|
227 |
-
|
228 |
-
# out = torch.einsum("...n,d->...nd", pos, omega)
|
229 |
-
out = pos.unsqueeze(-1) * omega.unsqueeze(0)
|
230 |
-
|
231 |
-
cos_out = torch.cos(out)
|
232 |
-
sin_out = torch.sin(out)
|
233 |
-
out = torch.stack([cos_out, -sin_out, sin_out, cos_out], dim=-1)
|
234 |
-
|
235 |
-
# out = rearrange(out, "b n d (i j) -> b n d i j", i=2, j=2)
|
236 |
-
b, n, d, _ = out.shape
|
237 |
-
out = out.view(b, n, d, 2, 2)
|
238 |
-
|
239 |
-
return out.float()
|
240 |
-
|
241 |
-
|
242 |
-
def apply_rope(xq: Tensor, xk: Tensor, freqs_cis: Tensor) -> tuple[Tensor, Tensor]:
|
243 |
-
xq_ = xq.float().reshape(*xq.shape[:-1], -1, 1, 2)
|
244 |
-
xk_ = xk.float().reshape(*xk.shape[:-1], -1, 1, 2)
|
245 |
-
xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1]
|
246 |
-
xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1]
|
247 |
-
return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk)
|
248 |
-
|
249 |
-
|
250 |
-
class EmbedND(nn.Module):
|
251 |
-
def __init__(self, dim: int, theta: int, axes_dim: list[int]):
|
252 |
-
super().__init__()
|
253 |
-
self.dim = dim
|
254 |
-
self.theta = theta
|
255 |
-
self.axes_dim = axes_dim
|
256 |
-
|
257 |
-
def forward(self, ids: Tensor) -> Tensor:
|
258 |
-
n_axes = ids.shape[-1]
|
259 |
-
emb = torch.cat(
|
260 |
-
[rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)],
|
261 |
-
dim=-3,
|
262 |
-
)
|
263 |
-
|
264 |
-
return emb.unsqueeze(1)
|
265 |
-
|
266 |
-
|
267 |
-
def timestep_embedding(t: Tensor, dim, max_period=10000, time_factor: float = 1000.0):
|
268 |
-
"""
|
269 |
-
Create sinusoidal timestep embeddings.
|
270 |
-
:param t: a 1-D Tensor of N indices, one per batch element.
|
271 |
-
These may be fractional.
|
272 |
-
:param dim: the dimension of the output.
|
273 |
-
:param max_period: controls the minimum frequency of the embeddings.
|
274 |
-
:return: an (N, D) Tensor of positional embeddings.
|
275 |
-
"""
|
276 |
-
t = time_factor * t
|
277 |
-
half = dim // 2
|
278 |
-
|
279 |
-
# Do not block CUDA steam, but having about 1e-4 differences with Flux official codes:
|
280 |
-
# freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32, device=t.device) / half)
|
281 |
-
|
282 |
-
# Block CUDA steam, but consistent with official codes:
|
283 |
-
freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to(t.device)
|
284 |
-
|
285 |
-
args = t[:, None].float() * freqs[None]
|
286 |
-
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
287 |
-
if dim % 2:
|
288 |
-
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
|
289 |
-
if torch.is_floating_point(t):
|
290 |
-
embedding = embedding.to(t)
|
291 |
-
return embedding
|
292 |
-
|
293 |
-
|
294 |
-
class MLPEmbedder(nn.Module):
|
295 |
-
def __init__(self, in_dim: int, hidden_dim: int):
|
296 |
-
super().__init__()
|
297 |
-
self.in_layer = nn.Linear(in_dim, hidden_dim, bias=True)
|
298 |
-
self.silu = nn.SiLU()
|
299 |
-
self.out_layer = nn.Linear(hidden_dim, hidden_dim, bias=True)
|
300 |
-
|
301 |
-
def forward(self, x: Tensor) -> Tensor:
|
302 |
-
return self.out_layer(self.silu(self.in_layer(x)))
|
303 |
-
|
304 |
-
|
305 |
-
class RMSNorm(torch.nn.Module):
|
306 |
-
def __init__(self, dim: int):
|
307 |
-
super().__init__()
|
308 |
-
self.scale = nn.Parameter(torch.ones(dim))
|
309 |
-
|
310 |
-
def forward(self, x: Tensor):
|
311 |
-
x_dtype = x.dtype
|
312 |
-
x = x.float()
|
313 |
-
rrms = torch.rsqrt(torch.mean(x**2, dim=-1, keepdim=True) + 1e-6)
|
314 |
-
return (x * rrms).to(dtype=x_dtype) * self.scale
|
315 |
-
|
316 |
-
|
317 |
-
class QKNorm(torch.nn.Module):
|
318 |
-
def __init__(self, dim: int):
|
319 |
-
super().__init__()
|
320 |
-
self.query_norm = RMSNorm(dim)
|
321 |
-
self.key_norm = RMSNorm(dim)
|
322 |
-
|
323 |
-
def forward(self, q: Tensor, k: Tensor, v: Tensor) -> tuple[Tensor, Tensor]:
|
324 |
-
q = self.query_norm(q)
|
325 |
-
k = self.key_norm(k)
|
326 |
-
return q.to(v), k.to(v)
|
327 |
-
|
328 |
-
|
329 |
-
class SelfAttention(nn.Module):
|
330 |
-
def __init__(self, dim: int, num_heads: int = 8, qkv_bias: bool = False):
|
331 |
-
super().__init__()
|
332 |
-
self.num_heads = num_heads
|
333 |
-
head_dim = dim // num_heads
|
334 |
-
|
335 |
-
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
336 |
-
self.norm = QKNorm(head_dim)
|
337 |
-
self.proj = nn.Linear(dim, dim)
|
338 |
-
|
339 |
-
def forward(self, x: Tensor, pe: Tensor) -> Tensor:
|
340 |
-
qkv = self.qkv(x)
|
341 |
-
# q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
|
342 |
-
B, L, _ = qkv.shape
|
343 |
-
qkv = qkv.view(B, L, 3, self.num_heads, -1)
|
344 |
-
q, k, v = qkv.permute(2, 0, 3, 1, 4)
|
345 |
-
q, k = self.norm(q, k, v)
|
346 |
-
x = attention(q, k, v, pe=pe)
|
347 |
-
x = self.proj(x)
|
348 |
-
return x
|
349 |
-
|
350 |
-
|
351 |
-
@dataclass
|
352 |
-
class ModulationOut:
|
353 |
-
shift: Tensor
|
354 |
-
scale: Tensor
|
355 |
-
gate: Tensor
|
356 |
-
|
357 |
-
|
358 |
-
class Modulation(nn.Module):
|
359 |
-
def __init__(self, dim: int, double: bool):
|
360 |
-
super().__init__()
|
361 |
-
self.is_double = double
|
362 |
-
self.multiplier = 6 if double else 3
|
363 |
-
self.lin = nn.Linear(dim, self.multiplier * dim, bias=True)
|
364 |
-
|
365 |
-
def forward(self, vec: Tensor) -> tuple[ModulationOut, ModulationOut | None]:
|
366 |
-
out = self.lin(nn.functional.silu(vec))[:, None, :].chunk(self.multiplier, dim=-1)
|
367 |
-
|
368 |
-
return (
|
369 |
-
ModulationOut(*out[:3]),
|
370 |
-
ModulationOut(*out[3:]) if self.is_double else None,
|
371 |
-
)
|
372 |
-
|
373 |
-
|
374 |
-
class DoubleStreamBlock(nn.Module):
|
375 |
-
def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False):
|
376 |
-
super().__init__()
|
377 |
-
|
378 |
-
mlp_hidden_dim = int(hidden_size * mlp_ratio)
|
379 |
-
self.num_heads = num_heads
|
380 |
-
self.hidden_size = hidden_size
|
381 |
-
self.img_mod = Modulation(hidden_size, double=True)
|
382 |
-
self.img_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
383 |
-
self.img_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias)
|
384 |
-
|
385 |
-
self.img_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
386 |
-
self.img_mlp = nn.Sequential(
|
387 |
-
nn.Linear(hidden_size, mlp_hidden_dim, bias=True),
|
388 |
-
nn.GELU(approximate="tanh"),
|
389 |
-
nn.Linear(mlp_hidden_dim, hidden_size, bias=True),
|
390 |
-
)
|
391 |
-
|
392 |
-
self.txt_mod = Modulation(hidden_size, double=True)
|
393 |
-
self.txt_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
394 |
-
self.txt_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias)
|
395 |
-
|
396 |
-
self.txt_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
397 |
-
self.txt_mlp = nn.Sequential(
|
398 |
-
nn.Linear(hidden_size, mlp_hidden_dim, bias=True),
|
399 |
-
nn.GELU(approximate="tanh"),
|
400 |
-
nn.Linear(mlp_hidden_dim, hidden_size, bias=True),
|
401 |
-
)
|
402 |
-
|
403 |
-
def forward(self, img: Tensor, txt: Tensor, vec: Tensor, pe: Tensor) -> tuple[Tensor, Tensor]:
|
404 |
-
img_mod1, img_mod2 = self.img_mod(vec)
|
405 |
-
txt_mod1, txt_mod2 = self.txt_mod(vec)
|
406 |
-
|
407 |
-
# prepare image for attention
|
408 |
-
img_modulated = self.img_norm1(img)
|
409 |
-
img_modulated = (1 + img_mod1.scale) * img_modulated + img_mod1.shift
|
410 |
-
img_qkv = self.img_attn.qkv(img_modulated)
|
411 |
-
# img_q, img_k, img_v = rearrange(img_qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
|
412 |
-
B, L, _ = img_qkv.shape
|
413 |
-
H = self.num_heads
|
414 |
-
D = img_qkv.shape[-1] // (3 * H)
|
415 |
-
img_q, img_k, img_v = img_qkv.view(B, L, 3, H, D).permute(2, 0, 3, 1, 4)
|
416 |
-
img_q, img_k = self.img_attn.norm(img_q, img_k, img_v)
|
417 |
-
|
418 |
-
# prepare txt for attention
|
419 |
-
txt_modulated = self.txt_norm1(txt)
|
420 |
-
txt_modulated = (1 + txt_mod1.scale) * txt_modulated + txt_mod1.shift
|
421 |
-
txt_qkv = self.txt_attn.qkv(txt_modulated)
|
422 |
-
# txt_q, txt_k, txt_v = rearrange(txt_qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
|
423 |
-
B, L, _ = txt_qkv.shape
|
424 |
-
txt_q, txt_k, txt_v = txt_qkv.view(B, L, 3, H, D).permute(2, 0, 3, 1, 4)
|
425 |
-
txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v)
|
426 |
-
|
427 |
-
# run actual attention
|
428 |
-
q = torch.cat((txt_q, img_q), dim=2)
|
429 |
-
k = torch.cat((txt_k, img_k), dim=2)
|
430 |
-
v = torch.cat((txt_v, img_v), dim=2)
|
431 |
-
|
432 |
-
attn = attention(q, k, v, pe=pe)
|
433 |
-
txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1] :]
|
434 |
-
|
435 |
-
# calculate the img bloks
|
436 |
-
img = img + img_mod1.gate * self.img_attn.proj(img_attn)
|
437 |
-
img = img + img_mod2.gate * self.img_mlp((1 + img_mod2.scale) * self.img_norm2(img) + img_mod2.shift)
|
438 |
-
|
439 |
-
# calculate the txt bloks
|
440 |
-
txt = txt + txt_mod1.gate * self.txt_attn.proj(txt_attn)
|
441 |
-
txt = txt + txt_mod2.gate * self.txt_mlp((1 + txt_mod2.scale) * self.txt_norm2(txt) + txt_mod2.shift)
|
442 |
-
return img, txt
|
443 |
-
|
444 |
-
|
445 |
-
class SingleStreamBlock(nn.Module):
|
446 |
-
"""
|
447 |
-
A DiT block with parallel linear layers as described in
|
448 |
-
https://arxiv.org/abs/2302.05442 and adapted modulation interface.
|
449 |
-
"""
|
450 |
-
|
451 |
-
def __init__(
|
452 |
-
self,
|
453 |
-
hidden_size: int,
|
454 |
-
num_heads: int,
|
455 |
-
mlp_ratio: float = 4.0,
|
456 |
-
qk_scale: float | None = None,
|
457 |
-
):
|
458 |
-
super().__init__()
|
459 |
-
self.hidden_dim = hidden_size
|
460 |
-
self.num_heads = num_heads
|
461 |
-
head_dim = hidden_size // num_heads
|
462 |
-
self.scale = qk_scale or head_dim**-0.5
|
463 |
-
|
464 |
-
self.mlp_hidden_dim = int(hidden_size * mlp_ratio)
|
465 |
-
# qkv and mlp_in
|
466 |
-
self.linear1 = nn.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim)
|
467 |
-
# proj and mlp_out
|
468 |
-
self.linear2 = nn.Linear(hidden_size + self.mlp_hidden_dim, hidden_size)
|
469 |
-
|
470 |
-
self.norm = QKNorm(head_dim)
|
471 |
-
|
472 |
-
self.hidden_size = hidden_size
|
473 |
-
self.pre_norm = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
474 |
-
|
475 |
-
self.mlp_act = nn.GELU(approximate="tanh")
|
476 |
-
self.modulation = Modulation(hidden_size, double=False)
|
477 |
-
|
478 |
-
def forward(self, x: Tensor, vec: Tensor, pe: Tensor) -> Tensor:
|
479 |
-
mod, _ = self.modulation(vec)
|
480 |
-
x_mod = (1 + mod.scale) * self.pre_norm(x) + mod.shift
|
481 |
-
qkv, mlp = torch.split(self.linear1(x_mod), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1)
|
482 |
-
|
483 |
-
# q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
|
484 |
-
qkv = qkv.view(qkv.size(0), qkv.size(1), 3, self.num_heads, self.hidden_size // self.num_heads)
|
485 |
-
q, k, v = qkv.permute(2, 0, 3, 1, 4)
|
486 |
-
q, k = self.norm(q, k, v)
|
487 |
-
|
488 |
-
# compute attention
|
489 |
-
attn = attention(q, k, v, pe=pe)
|
490 |
-
# compute activation in mlp stream, cat again and run second linear layer
|
491 |
-
output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2))
|
492 |
-
return x + mod.gate * output
|
493 |
-
|
494 |
-
|
495 |
-
class LastLayer(nn.Module):
|
496 |
-
def __init__(self, hidden_size: int, patch_size: int, out_channels: int):
|
497 |
-
super().__init__()
|
498 |
-
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
499 |
-
self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True)
|
500 |
-
self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(hidden_size, 2 * hidden_size, bias=True))
|
501 |
-
|
502 |
-
def forward(self, x: Tensor, vec: Tensor) -> Tensor:
|
503 |
-
shift, scale = self.adaLN_modulation(vec).chunk(2, dim=1)
|
504 |
-
x = (1 + scale[:, None, :]) * self.norm_final(x) + shift[:, None, :]
|
505 |
-
x = self.linear(x)
|
506 |
-
return x
|
507 |
-
|
508 |
-
|
509 |
-
class FluxParams:
|
510 |
-
in_channels: int = 64
|
511 |
-
vec_in_dim: int = 768
|
512 |
-
context_in_dim: int = 4096
|
513 |
-
hidden_size: int = 3072
|
514 |
-
mlp_ratio: float = 4.0
|
515 |
-
num_heads: int = 24
|
516 |
-
depth: int = 19
|
517 |
-
depth_single_blocks: int = 38
|
518 |
-
axes_dim: list = [16, 56, 56]
|
519 |
-
theta: int = 10_000
|
520 |
-
qkv_bias: bool = True
|
521 |
-
guidance_embed: bool = True
|
522 |
-
|
523 |
-
|
524 |
-
class Flux(nn.Module):
|
525 |
-
"""
|
526 |
-
Transformer model for flow matching on sequences.
|
527 |
-
"""
|
528 |
-
|
529 |
-
def __init__(self, params = FluxParams()):
|
530 |
-
super().__init__()
|
531 |
-
|
532 |
-
self.params = params
|
533 |
-
self.in_channels = params.in_channels
|
534 |
-
self.out_channels = self.in_channels
|
535 |
-
if params.hidden_size % params.num_heads != 0:
|
536 |
-
raise ValueError(
|
537 |
-
f"Hidden size {params.hidden_size} must be divisible by num_heads {params.num_heads}"
|
538 |
-
)
|
539 |
-
pe_dim = params.hidden_size // params.num_heads
|
540 |
-
if sum(params.axes_dim) != pe_dim:
|
541 |
-
raise ValueError(f"Got {params.axes_dim} but expected positional dim {pe_dim}")
|
542 |
-
self.hidden_size = params.hidden_size
|
543 |
-
self.num_heads = params.num_heads
|
544 |
-
self.pe_embedder = EmbedND(dim=pe_dim, theta=params.theta, axes_dim=params.axes_dim)
|
545 |
-
self.img_in = nn.Linear(self.in_channels, self.hidden_size, bias=True)
|
546 |
-
self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size)
|
547 |
-
self.vector_in = MLPEmbedder(params.vec_in_dim, self.hidden_size)
|
548 |
-
self.guidance_in = (
|
549 |
-
MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size) if params.guidance_embed else nn.Identity()
|
550 |
-
)
|
551 |
-
self.txt_in = nn.Linear(params.context_in_dim, self.hidden_size)
|
552 |
-
|
553 |
-
self.double_blocks = nn.ModuleList(
|
554 |
-
[
|
555 |
-
DoubleStreamBlock(
|
556 |
-
self.hidden_size,
|
557 |
-
self.num_heads,
|
558 |
-
mlp_ratio=params.mlp_ratio,
|
559 |
-
qkv_bias=params.qkv_bias,
|
560 |
-
)
|
561 |
-
for _ in range(params.depth)
|
562 |
-
]
|
563 |
-
)
|
564 |
-
|
565 |
-
self.single_blocks = nn.ModuleList(
|
566 |
-
[
|
567 |
-
SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio)
|
568 |
-
for _ in range(params.depth_single_blocks)
|
569 |
-
]
|
570 |
-
)
|
571 |
-
|
572 |
-
self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels)
|
573 |
-
|
574 |
-
def forward(
|
575 |
-
self,
|
576 |
-
img: Tensor,
|
577 |
-
img_ids: Tensor,
|
578 |
-
txt: Tensor,
|
579 |
-
txt_ids: Tensor,
|
580 |
-
timesteps: Tensor,
|
581 |
-
y: Tensor,
|
582 |
-
guidance: Tensor | None = None,
|
583 |
-
) -> Tensor:
|
584 |
-
if img.ndim != 3 or txt.ndim != 3:
|
585 |
-
raise ValueError("Input img and txt tensors must have 3 dimensions.")
|
586 |
-
|
587 |
-
# running on sequences img
|
588 |
-
img = self.img_in(img)
|
589 |
-
vec = self.time_in(timestep_embedding(timesteps, 256))
|
590 |
-
if self.params.guidance_embed:
|
591 |
-
if guidance is None:
|
592 |
-
raise ValueError("Didn't get guidance strength for guidance distilled model.")
|
593 |
-
vec = vec + self.guidance_in(timestep_embedding(guidance, 256))
|
594 |
-
vec = vec + self.vector_in(y)
|
595 |
-
txt = self.txt_in(txt)
|
596 |
-
|
597 |
-
ids = torch.cat((txt_ids, img_ids), dim=1)
|
598 |
-
pe = self.pe_embedder(ids)
|
599 |
-
|
600 |
-
for block in self.double_blocks:
|
601 |
-
img, txt = block(img=img, txt=txt, vec=vec, pe=pe)
|
602 |
-
|
603 |
-
img = torch.cat((txt, img), 1)
|
604 |
-
for block in self.single_blocks:
|
605 |
-
img = block(img, vec=vec, pe=pe)
|
606 |
-
img = img[:, txt.shape[1] :, ...]
|
607 |
-
|
608 |
-
img = self.final_layer(img, vec) # (N, T, patch_size ** 2 * out_channels)
|
609 |
-
return img
|
610 |
-
|
611 |
-
|
612 |
-
def prepare(t5: HFEmbedder, clip: HFEmbedder, img: Tensor, prompt: str | list[str]) -> dict[str, Tensor]:
|
613 |
-
bs, c, h, w = img.shape
|
614 |
-
if bs == 1 and not isinstance(prompt, str):
|
615 |
-
bs = len(prompt)
|
616 |
-
|
617 |
-
img = rearrange(img, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2)
|
618 |
-
if img.shape[0] == 1 and bs > 1:
|
619 |
-
img = repeat(img, "1 ... -> bs ...", bs=bs)
|
620 |
-
|
621 |
-
img_ids = torch.zeros(h // 2, w // 2, 3)
|
622 |
-
img_ids[..., 1] = img_ids[..., 1] + torch.arange(h // 2)[:, None]
|
623 |
-
img_ids[..., 2] = img_ids[..., 2] + torch.arange(w // 2)[None, :]
|
624 |
-
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs)
|
625 |
-
|
626 |
-
if isinstance(prompt, str):
|
627 |
-
prompt = [prompt]
|
628 |
-
txt = t5(prompt)
|
629 |
-
if txt.shape[0] == 1 and bs > 1:
|
630 |
-
txt = repeat(txt, "1 ... -> bs ...", bs=bs)
|
631 |
-
txt_ids = torch.zeros(bs, txt.shape[1], 3)
|
632 |
-
|
633 |
-
vec = clip(prompt)
|
634 |
-
if vec.shape[0] == 1 and bs > 1:
|
635 |
-
vec = repeat(vec, "1 ... -> bs ...", bs=bs)
|
636 |
-
|
637 |
-
return {
|
638 |
-
"img": img,
|
639 |
-
"img_ids": img_ids.to(img.device),
|
640 |
-
"txt": txt.to(img.device),
|
641 |
-
"txt_ids": txt_ids.to(img.device),
|
642 |
-
"vec": vec.to(img.device),
|
643 |
-
}
|
644 |
-
|
645 |
-
|
646 |
-
def time_shift(mu: float, sigma: float, t: Tensor):
|
647 |
-
return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma)
|
648 |
-
|
649 |
-
|
650 |
-
def get_lin_function(
|
651 |
-
x1: float = 256, y1: float = 0.5, x2: float = 4096, y2: float = 1.15
|
652 |
-
) -> Callable[[float], float]:
|
653 |
-
m = (y2 - y1) / (x2 - x1)
|
654 |
-
b = y1 - m * x1
|
655 |
-
return lambda x: m * x + b
|
656 |
-
|
657 |
-
|
658 |
-
def get_schedule(
|
659 |
-
num_steps: int,
|
660 |
-
image_seq_len: int,
|
661 |
-
base_shift: float = 0.5,
|
662 |
-
max_shift: float = 1.15,
|
663 |
-
shift: bool = True,
|
664 |
-
) -> list[float]:
|
665 |
-
# extra step for zero
|
666 |
-
timesteps = torch.linspace(1, 0, num_steps + 1)
|
667 |
-
|
668 |
-
# shifting the schedule to favor high timesteps for higher signal images
|
669 |
-
if shift:
|
670 |
-
# eastimate mu based on linear estimation between two points
|
671 |
-
mu = get_lin_function(y1=base_shift, y2=max_shift)(image_seq_len)
|
672 |
-
timesteps = time_shift(mu, 1.0, timesteps)
|
673 |
-
|
674 |
-
return timesteps.tolist()
|
675 |
-
|
676 |
-
|
677 |
-
def denoise(
|
678 |
-
model: Flux,
|
679 |
-
# model input
|
680 |
-
img: Tensor,
|
681 |
-
img_ids: Tensor,
|
682 |
-
txt: Tensor,
|
683 |
-
txt_ids: Tensor,
|
684 |
-
vec: Tensor,
|
685 |
-
# sampling parameters
|
686 |
-
timesteps: list[float],
|
687 |
-
guidance: float = 4.0,
|
688 |
-
):
|
689 |
-
# this is ignored for schnell
|
690 |
-
guidance_vec = torch.full((img.shape[0],), guidance, device=img.device, dtype=img.dtype)
|
691 |
-
for t_curr, t_prev in tqdm(zip(timesteps[:-1], timesteps[1:]), total=len(timesteps) - 1):
|
692 |
-
t_vec = torch.full((img.shape[0],), t_curr, dtype=img.dtype, device=img.device)
|
693 |
-
pred = model(
|
694 |
-
img=img,
|
695 |
-
img_ids=img_ids,
|
696 |
-
txt=txt,
|
697 |
-
txt_ids=txt_ids,
|
698 |
-
y=vec,
|
699 |
-
timesteps=t_vec,
|
700 |
-
guidance=guidance_vec,
|
701 |
-
)
|
702 |
-
img = img + (t_prev - t_curr) * pred
|
703 |
-
return img
|
704 |
-
|
705 |
-
|
706 |
-
def unpack(x: Tensor, height: int, width: int) -> Tensor:
|
707 |
-
return rearrange(
|
708 |
-
x,
|
709 |
-
"b (h w) (c ph pw) -> b c (h ph) (w pw)",
|
710 |
-
h=math.ceil(height / 16),
|
711 |
-
w=math.ceil(width / 16),
|
712 |
-
ph=2,
|
713 |
-
pw=2,
|
714 |
-
)
|
715 |
-
|
716 |
-
@dataclass
|
717 |
-
class SamplingOptions:
|
718 |
-
prompt: str
|
719 |
-
width: int
|
720 |
-
height: int
|
721 |
-
guidance: float
|
722 |
-
seed: int | None
|
723 |
-
|
724 |
-
|
725 |
-
def get_image(image) -> torch.Tensor | None:
|
726 |
-
if image is None:
|
727 |
-
return None
|
728 |
-
image = Image.fromarray(image).convert("RGB")
|
729 |
-
|
730 |
-
transform = transforms.Compose([
|
731 |
-
transforms.ToTensor(),
|
732 |
-
transforms.Lambda(lambda x: 2.0 * x - 1.0),
|
733 |
-
])
|
734 |
-
img: torch.Tensor = transform(image)
|
735 |
-
return img[None, ...]
|
736 |
-
|
737 |
-
|
738 |
-
# ---------------- Demo ----------------
|
739 |
-
|
740 |
-
|
741 |
-
from huggingface_hub import hf_hub_download
|
742 |
-
from safetensors.torch import load_file
|
743 |
-
|
744 |
-
sd = load_file(hf_hub_download(repo_id="lllyasviel/flux1-dev-bnb-nf4", filename="flux1-dev-bnb-nf4-v2.safetensors"))
|
745 |
-
sd = {k.replace("model.diffusion_model.", ""): v for k, v in sd.items() if "model.diffusion_model" in k}
|
746 |
-
model = Flux().to(dtype=torch.bfloat16, device="cuda")
|
747 |
-
result = model.load_state_dict(sd)
|
748 |
-
model_zero_init = False
|
749 |
-
|
750 |
-
|
751 |
-
@spaces.GPU
|
752 |
-
@torch.no_grad()
|
753 |
-
def generate_image(
|
754 |
-
prompt, width, height, guidance, inference_steps, seed,
|
755 |
-
do_img2img, init_image, image2image_strength, resize_img,
|
756 |
-
progress=gr.Progress(track_tqdm=True),
|
757 |
-
):
|
758 |
-
translated_prompt = prompt
|
759 |
-
|
760 |
-
# 한글, 일본어, 중국어, 스페인어 문자 감지
|
761 |
-
def contains_korean(text):
|
762 |
-
return any('\u3131' <= c <= '\u318E' or '\uAC00' <= c <= '\uD7A3' for c in text)
|
763 |
-
|
764 |
-
def contains_japanese(text):
|
765 |
-
return any('\u3040' <= c <= '\u309F' or '\u30A0' <= c <= '\u30FF' or '\u4E00' <= c <= '\u9FFF' for c in text)
|
766 |
-
|
767 |
-
def contains_chinese(text):
|
768 |
-
return any('\u4e00' <= c <= '\u9fff' for c in text)
|
769 |
-
|
770 |
-
def contains_spanish(text):
|
771 |
-
# 스페인어 특수 문자 포함 확인
|
772 |
-
spanish_chars = set('áéíóúüñ¿¡')
|
773 |
-
return any(c in spanish_chars for c in text.lower())
|
774 |
-
|
775 |
-
# 번역기 추가
|
776 |
-
ko_translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
|
777 |
-
ja_translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ja-en")
|
778 |
-
zh_translator = pipeline("translation", model="Helsinki-NLP/opus-mt-zh-en")
|
779 |
-
es_translator = pipeline("translation", model="Helsinki-NLP/opus-mt-es-en")
|
780 |
-
|
781 |
-
# 각 언어 감지 후 번역
|
782 |
-
if contains_korean(prompt):
|
783 |
-
translated_prompt = ko_translator(prompt, max_length=512)[0]['translation_text']
|
784 |
-
print(f"Translated Korean prompt: {translated_prompt}")
|
785 |
-
prompt = translated_prompt
|
786 |
-
elif contains_japanese(prompt):
|
787 |
-
translated_prompt = ja_translator(prompt, max_length=512)[0]['translation_text']
|
788 |
-
print(f"Translated Japanese prompt: {translated_prompt}")
|
789 |
-
prompt = translated_prompt
|
790 |
-
elif contains_chinese(prompt):
|
791 |
-
translated_prompt = zh_translator(prompt, max_length=512)[0]['translation_text']
|
792 |
-
print(f"Translated Chinese prompt: {translated_prompt}")
|
793 |
-
prompt = translated_prompt
|
794 |
-
elif contains_spanish(prompt):
|
795 |
-
translated_prompt = es_translator(prompt, max_length=512)[0]['translation_text']
|
796 |
-
print(f"Translated Spanish prompt: {translated_prompt}")
|
797 |
-
prompt = translated_prompt
|
798 |
-
|
799 |
-
if seed == 0:
|
800 |
-
seed = int(random.random() * 1000000)
|
801 |
-
|
802 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
803 |
-
torch_device = torch.device(device)
|
804 |
-
|
805 |
-
|
806 |
-
global model, model_zero_init
|
807 |
-
if not model_zero_init:
|
808 |
-
model = model.to(torch_device)
|
809 |
-
model_zero_init = True
|
810 |
-
|
811 |
-
if do_img2img and init_image is not None:
|
812 |
-
init_image = get_image(init_image)
|
813 |
-
if resize_img:
|
814 |
-
init_image = torch.nn.functional.interpolate(init_image, (height, width))
|
815 |
-
else:
|
816 |
-
h, w = init_image.shape[-2:]
|
817 |
-
init_image = init_image[..., : 16 * (h // 16), : 16 * (w // 16)]
|
818 |
-
height = init_image.shape[-2]
|
819 |
-
width = init_image.shape[-1]
|
820 |
-
init_image = ae.encode(init_image.to(torch_device).to(torch.bfloat16)).latent_dist.sample()
|
821 |
-
init_image = (init_image - ae.config.shift_factor) * ae.config.scaling_factor
|
822 |
-
|
823 |
-
generator = torch.Generator(device=device).manual_seed(seed)
|
824 |
-
x = torch.randn(1, 16, 2 * math.ceil(height / 16), 2 * math.ceil(width / 16), device=device, dtype=torch.bfloat16, generator=generator)
|
825 |
-
|
826 |
-
num_steps = inference_steps
|
827 |
-
timesteps = get_schedule(num_steps, (x.shape[-1] * x.shape[-2]) // 4, shift=True)
|
828 |
-
|
829 |
-
if do_img2img and init_image is not None:
|
830 |
-
t_idx = int((1 - image2image_strength) * num_steps)
|
831 |
-
t = timesteps[t_idx]
|
832 |
-
timesteps = timesteps[t_idx:]
|
833 |
-
x = t * x + (1.0 - t) * init_image.to(x.dtype)
|
834 |
-
|
835 |
-
inp = prepare(t5=t5, clip=clip, img=x, prompt=prompt)
|
836 |
-
x = denoise(model, **inp, timesteps=timesteps, guidance=guidance)
|
837 |
-
|
838 |
-
# with profile(activities=[ProfilerActivity.CPU],record_shapes=True,profile_memory=True) as prof:
|
839 |
-
# print(prof.key_averages().table(sort_by="cpu_time_total", row_limit=20))
|
840 |
-
|
841 |
-
x = unpack(x.float(), height, width)
|
842 |
-
with torch.autocast(device_type=torch_device.type, dtype=torch.bfloat16):
|
843 |
-
x = x = (x / ae.config.scaling_factor) + ae.config.shift_factor
|
844 |
-
x = ae.decode(x).sample
|
845 |
-
|
846 |
-
x = x.clamp(-1, 1)
|
847 |
-
x = rearrange(x[0], "c h w -> h w c")
|
848 |
-
img = Image.fromarray((127.5 * (x + 1.0)).cpu().byte().numpy())
|
849 |
-
|
850 |
-
|
851 |
-
return img, seed, translated_prompt
|
852 |
-
|
853 |
-
css = """
|
854 |
-
footer {
|
855 |
-
visibility: hidden;
|
856 |
-
}
|
857 |
-
"""
|
858 |
-
|
859 |
-
|
860 |
-
def create_demo():
|
861 |
-
with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo:
|
862 |
-
gr.Markdown("# FLUXllama Multilingual")
|
863 |
-
|
864 |
-
with gr.Row():
|
865 |
-
with gr.Column():
|
866 |
-
prompt = gr.Textbox(label="Prompt(Supports English, Korean, and Japanese)", value="A cute and fluffy golden retriever puppy sitting upright, holding a neatly designed white sign with bold, colorful lettering that reads 'Have a Happy Day!' in cheerful fonts. The puppy has expressive, sparkling eyes, a happy smile, and fluffy ears slightly flopped. The background is a vibrant and sunny meadow with soft-focus flowers, glowing sunlight filtering through the trees, and a warm golden glow that enhances the joyful atmosphere. The sign is framed with small decorative flowers, adding a charming and wholesome touch. Ensure the text on the sign is clear and legible.")
|
867 |
-
|
868 |
-
width = gr.Slider(minimum=128, maximum=2048, step=64, label="Width", value=768)
|
869 |
-
height = gr.Slider(minimum=128, maximum=2048, step=64, label="Height", value=768)
|
870 |
-
guidance = gr.Slider(minimum=1.0, maximum=5.0, step=0.1, label="Guidance", value=3.5)
|
871 |
-
inference_steps = gr.Slider(
|
872 |
-
label="Inference steps",
|
873 |
-
minimum=1,
|
874 |
-
maximum=30,
|
875 |
-
step=1,
|
876 |
-
value=30,
|
877 |
-
)
|
878 |
-
seed = gr.Number(label="Seed", precision=-1)
|
879 |
-
do_img2img = gr.Checkbox(label="Image to Image", value=False)
|
880 |
-
init_image = gr.Image(label="Input Image", visible=False)
|
881 |
-
image2image_strength = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label="Noising strength", value=0.8, visible=False)
|
882 |
-
resize_img = gr.Checkbox(label="Resize image", value=True, visible=False)
|
883 |
-
generate_button = gr.Button("Generate")
|
884 |
-
|
885 |
-
with gr.Column():
|
886 |
-
output_image = gr.Image(label="Generated Image")
|
887 |
-
output_seed = gr.Text(label="Used Seed")
|
888 |
-
output_translated = gr.Text(label="Translated Prompt")
|
889 |
-
|
890 |
-
# Examples 컴포넌트 추가
|
891 |
-
gr.Examples(
|
892 |
-
examples=[
|
893 |
-
"a tiny astronaut hatching from an egg on the moon",
|
894 |
-
"썬글라스 착용한 귀여운 흰색 고양이가 'LOVE'라는 표지판을 들고있다",
|
895 |
-
"桜が流れる夜の街、照明",
|
896 |
-
],
|
897 |
-
inputs=prompt, # 예제가 입력될 컴포넌트 지정
|
898 |
-
)
|
899 |
-
|
900 |
-
do_img2img.change(
|
901 |
-
fn=lambda x: [gr.update(visible=x), gr.update(visible=x), gr.update(visible=x)],
|
902 |
-
inputs=[do_img2img],
|
903 |
-
outputs=[init_image, image2image_strength, resize_img]
|
904 |
-
)
|
905 |
-
|
906 |
-
generate_button.click(
|
907 |
-
fn=generate_image,
|
908 |
-
inputs=[prompt, width, height, guidance, inference_steps, seed, do_img2img, init_image, image2image_strength, resize_img],
|
909 |
-
outputs=[output_image, output_seed, output_translated]
|
910 |
-
)
|
911 |
-
|
912 |
-
return demo
|
913 |
-
|
914 |
-
if __name__ == "__main__":
|
915 |
-
demo = create_demo()
|
916 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|