ginipick commited on
Commit
262073a
1 Parent(s): d450fd7

Create app-backup.py

Browse files
Files changed (1) hide show
  1. app-backup.py +906 -0
app-backup.py ADDED
@@ -0,0 +1,906 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # import os
2
+ import spaces
3
+
4
+ import time
5
+ import gradio as gr
6
+ import torch
7
+ from PIL import Image
8
+ from torchvision import transforms
9
+ from dataclasses import dataclass
10
+ import math
11
+ from typing import Callable
12
+
13
+ from tqdm import tqdm
14
+ import bitsandbytes as bnb
15
+ from bitsandbytes.nn.modules import Params4bit, QuantState
16
+
17
+ import torch
18
+ import random
19
+ from einops import rearrange, repeat
20
+ from diffusers import AutoencoderKL
21
+ from torch import Tensor, nn
22
+ from transformers import CLIPTextModel, CLIPTokenizer
23
+ from transformers import T5EncoderModel, T5Tokenizer
24
+ # from optimum.quanto import freeze, qfloat8, quantize
25
+ from transformers import pipeline
26
+
27
+ class HFEmbedder(nn.Module):
28
+ def __init__(self, version: str, max_length: int, **hf_kwargs):
29
+ super().__init__()
30
+ self.is_clip = version.startswith("openai")
31
+ self.max_length = max_length
32
+ self.output_key = "pooler_output" if self.is_clip else "last_hidden_state"
33
+
34
+ if self.is_clip:
35
+ self.tokenizer: CLIPTokenizer = CLIPTokenizer.from_pretrained(version, max_length=max_length)
36
+ self.hf_module: CLIPTextModel = CLIPTextModel.from_pretrained(version, **hf_kwargs)
37
+ else:
38
+ self.tokenizer: T5Tokenizer = T5Tokenizer.from_pretrained(version, max_length=max_length)
39
+ self.hf_module: T5EncoderModel = T5EncoderModel.from_pretrained(version, **hf_kwargs)
40
+
41
+ self.hf_module = self.hf_module.eval().requires_grad_(False)
42
+
43
+ def forward(self, text: list[str]) -> Tensor:
44
+ batch_encoding = self.tokenizer(
45
+ text,
46
+ truncation=True,
47
+ max_length=self.max_length,
48
+ return_length=False,
49
+ return_overflowing_tokens=False,
50
+ padding="max_length",
51
+ return_tensors="pt",
52
+ )
53
+
54
+ outputs = self.hf_module(
55
+ input_ids=batch_encoding["input_ids"].to(self.hf_module.device),
56
+ attention_mask=None,
57
+ output_hidden_states=False,
58
+ )
59
+ return outputs[self.output_key]
60
+
61
+
62
+ device = "cuda"
63
+ t5 = HFEmbedder("DeepFloyd/t5-v1_1-xxl", max_length=512, torch_dtype=torch.bfloat16).to(device)
64
+ clip = HFEmbedder("openai/clip-vit-large-patch14", max_length=77, torch_dtype=torch.bfloat16).to(device)
65
+ ae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=torch.bfloat16).to(device)
66
+ # quantize(t5, weights=qfloat8)
67
+ # freeze(t5)
68
+
69
+
70
+ # ---------------- NF4 ----------------
71
+
72
+
73
+ def functional_linear_4bits(x, weight, bias):
74
+ out = bnb.matmul_4bit(x, weight.t(), bias=bias, quant_state=weight.quant_state)
75
+ out = out.to(x)
76
+ return out
77
+
78
+
79
+ def copy_quant_state(state: QuantState, device: torch.device = None) -> QuantState:
80
+ if state is None:
81
+ return None
82
+
83
+ device = device or state.absmax.device
84
+
85
+ state2 = (
86
+ QuantState(
87
+ absmax=state.state2.absmax.to(device),
88
+ shape=state.state2.shape,
89
+ code=state.state2.code.to(device),
90
+ blocksize=state.state2.blocksize,
91
+ quant_type=state.state2.quant_type,
92
+ dtype=state.state2.dtype,
93
+ )
94
+ if state.nested
95
+ else None
96
+ )
97
+
98
+ return QuantState(
99
+ absmax=state.absmax.to(device),
100
+ shape=state.shape,
101
+ code=state.code.to(device),
102
+ blocksize=state.blocksize,
103
+ quant_type=state.quant_type,
104
+ dtype=state.dtype,
105
+ offset=state.offset.to(device) if state.nested else None,
106
+ state2=state2,
107
+ )
108
+
109
+
110
+ class ForgeParams4bit(Params4bit):
111
+ def to(self, *args, **kwargs):
112
+ device, dtype, non_blocking, convert_to_format = torch._C._nn._parse_to(*args, **kwargs)
113
+ if device is not None and device.type == "cuda" and not self.bnb_quantized:
114
+ return self._quantize(device)
115
+ else:
116
+ n = ForgeParams4bit(
117
+ torch.nn.Parameter.to(self, device=device, dtype=dtype, non_blocking=non_blocking),
118
+ requires_grad=self.requires_grad,
119
+ quant_state=copy_quant_state(self.quant_state, device),
120
+ # blocksize=self.blocksize,
121
+ # compress_statistics=self.compress_statistics,
122
+ compress_statistics=False,
123
+ blocksize=64,
124
+ quant_type=self.quant_type,
125
+ quant_storage=self.quant_storage,
126
+ bnb_quantized=self.bnb_quantized,
127
+ module=self.module
128
+ )
129
+ self.module.quant_state = n.quant_state
130
+ self.data = n.data
131
+ self.quant_state = n.quant_state
132
+ return n
133
+
134
+
135
+ class ForgeLoader4Bit(torch.nn.Module):
136
+ def __init__(self, *, device, dtype, quant_type, **kwargs):
137
+ super().__init__()
138
+ self.dummy = torch.nn.Parameter(torch.empty(1, device=device, dtype=dtype))
139
+ self.weight = None
140
+ self.quant_state = None
141
+ self.bias = None
142
+ self.quant_type = quant_type
143
+
144
+ def _save_to_state_dict(self, destination, prefix, keep_vars):
145
+ super()._save_to_state_dict(destination, prefix, keep_vars)
146
+ quant_state = getattr(self.weight, "quant_state", None)
147
+ if quant_state is not None:
148
+ for k, v in quant_state.as_dict(packed=True).items():
149
+ destination[prefix + "weight." + k] = v if keep_vars else v.detach()
150
+ return
151
+
152
+ def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs):
153
+ quant_state_keys = {k[len(prefix + "weight."):] for k in state_dict.keys() if k.startswith(prefix + "weight.")}
154
+
155
+ if any('bitsandbytes' in k for k in quant_state_keys):
156
+ quant_state_dict = {k: state_dict[prefix + "weight." + k] for k in quant_state_keys}
157
+
158
+ self.weight = ForgeParams4bit.from_prequantized(
159
+ data=state_dict[prefix + 'weight'],
160
+ quantized_stats=quant_state_dict,
161
+ requires_grad=False,
162
+ # device=self.dummy.device,
163
+ device=torch.device('cuda'),
164
+ module=self
165
+ )
166
+ self.quant_state = self.weight.quant_state
167
+
168
+ if prefix + 'bias' in state_dict:
169
+ self.bias = torch.nn.Parameter(state_dict[prefix + 'bias'].to(self.dummy))
170
+
171
+ del self.dummy
172
+ elif hasattr(self, 'dummy'):
173
+ if prefix + 'weight' in state_dict:
174
+ self.weight = ForgeParams4bit(
175
+ state_dict[prefix + 'weight'].to(self.dummy),
176
+ requires_grad=False,
177
+ compress_statistics=True,
178
+ quant_type=self.quant_type,
179
+ quant_storage=torch.uint8,
180
+ module=self,
181
+ )
182
+ self.quant_state = self.weight.quant_state
183
+
184
+ if prefix + 'bias' in state_dict:
185
+ self.bias = torch.nn.Parameter(state_dict[prefix + 'bias'].to(self.dummy))
186
+
187
+ del self.dummy
188
+ else:
189
+ super()._load_from_state_dict(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs)
190
+
191
+
192
+ class Linear(ForgeLoader4Bit):
193
+ def __init__(self, *args, device=None, dtype=None, **kwargs):
194
+ super().__init__(device=device, dtype=dtype, quant_type='nf4')
195
+
196
+ def forward(self, x):
197
+ self.weight.quant_state = self.quant_state
198
+
199
+ if self.bias is not None and self.bias.dtype != x.dtype:
200
+ # Maybe this can also be set to all non-bnb ops since the cost is very low.
201
+ # And it only invokes one time, and most linear does not have bias
202
+ self.bias.data = self.bias.data.to(x.dtype)
203
+
204
+ return functional_linear_4bits(x, self.weight, self.bias)
205
+
206
+
207
+ nn.Linear = Linear
208
+
209
+
210
+ # ---------------- Model ----------------
211
+
212
+
213
+ def attention(q: Tensor, k: Tensor, v: Tensor, pe: Tensor) -> Tensor:
214
+ q, k = apply_rope(q, k, pe)
215
+
216
+ x = torch.nn.functional.scaled_dot_product_attention(q, k, v)
217
+ # x = rearrange(x, "B H L D -> B L (H D)")
218
+ x = x.permute(0, 2, 1, 3).reshape(x.size(0), x.size(2), -1)
219
+
220
+ return x
221
+
222
+
223
+ def rope(pos, dim, theta):
224
+ scale = torch.arange(0, dim, 2, dtype=torch.float64, device=pos.device) / dim
225
+ omega = 1.0 / (theta ** scale)
226
+
227
+ # out = torch.einsum("...n,d->...nd", pos, omega)
228
+ out = pos.unsqueeze(-1) * omega.unsqueeze(0)
229
+
230
+ cos_out = torch.cos(out)
231
+ sin_out = torch.sin(out)
232
+ out = torch.stack([cos_out, -sin_out, sin_out, cos_out], dim=-1)
233
+
234
+ # out = rearrange(out, "b n d (i j) -> b n d i j", i=2, j=2)
235
+ b, n, d, _ = out.shape
236
+ out = out.view(b, n, d, 2, 2)
237
+
238
+ return out.float()
239
+
240
+
241
+ def apply_rope(xq: Tensor, xk: Tensor, freqs_cis: Tensor) -> tuple[Tensor, Tensor]:
242
+ xq_ = xq.float().reshape(*xq.shape[:-1], -1, 1, 2)
243
+ xk_ = xk.float().reshape(*xk.shape[:-1], -1, 1, 2)
244
+ xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1]
245
+ xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1]
246
+ return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk)
247
+
248
+
249
+ class EmbedND(nn.Module):
250
+ def __init__(self, dim: int, theta: int, axes_dim: list[int]):
251
+ super().__init__()
252
+ self.dim = dim
253
+ self.theta = theta
254
+ self.axes_dim = axes_dim
255
+
256
+ def forward(self, ids: Tensor) -> Tensor:
257
+ n_axes = ids.shape[-1]
258
+ emb = torch.cat(
259
+ [rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)],
260
+ dim=-3,
261
+ )
262
+
263
+ return emb.unsqueeze(1)
264
+
265
+
266
+ def timestep_embedding(t: Tensor, dim, max_period=10000, time_factor: float = 1000.0):
267
+ """
268
+ Create sinusoidal timestep embeddings.
269
+ :param t: a 1-D Tensor of N indices, one per batch element.
270
+ These may be fractional.
271
+ :param dim: the dimension of the output.
272
+ :param max_period: controls the minimum frequency of the embeddings.
273
+ :return: an (N, D) Tensor of positional embeddings.
274
+ """
275
+ t = time_factor * t
276
+ half = dim // 2
277
+
278
+ # Do not block CUDA steam, but having about 1e-4 differences with Flux official codes:
279
+ # freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32, device=t.device) / half)
280
+
281
+ # Block CUDA steam, but consistent with official codes:
282
+ freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to(t.device)
283
+
284
+ args = t[:, None].float() * freqs[None]
285
+ embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
286
+ if dim % 2:
287
+ embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
288
+ if torch.is_floating_point(t):
289
+ embedding = embedding.to(t)
290
+ return embedding
291
+
292
+
293
+ class MLPEmbedder(nn.Module):
294
+ def __init__(self, in_dim: int, hidden_dim: int):
295
+ super().__init__()
296
+ self.in_layer = nn.Linear(in_dim, hidden_dim, bias=True)
297
+ self.silu = nn.SiLU()
298
+ self.out_layer = nn.Linear(hidden_dim, hidden_dim, bias=True)
299
+
300
+ def forward(self, x: Tensor) -> Tensor:
301
+ return self.out_layer(self.silu(self.in_layer(x)))
302
+
303
+
304
+ class RMSNorm(torch.nn.Module):
305
+ def __init__(self, dim: int):
306
+ super().__init__()
307
+ self.scale = nn.Parameter(torch.ones(dim))
308
+
309
+ def forward(self, x: Tensor):
310
+ x_dtype = x.dtype
311
+ x = x.float()
312
+ rrms = torch.rsqrt(torch.mean(x**2, dim=-1, keepdim=True) + 1e-6)
313
+ return (x * rrms).to(dtype=x_dtype) * self.scale
314
+
315
+
316
+ class QKNorm(torch.nn.Module):
317
+ def __init__(self, dim: int):
318
+ super().__init__()
319
+ self.query_norm = RMSNorm(dim)
320
+ self.key_norm = RMSNorm(dim)
321
+
322
+ def forward(self, q: Tensor, k: Tensor, v: Tensor) -> tuple[Tensor, Tensor]:
323
+ q = self.query_norm(q)
324
+ k = self.key_norm(k)
325
+ return q.to(v), k.to(v)
326
+
327
+
328
+ class SelfAttention(nn.Module):
329
+ def __init__(self, dim: int, num_heads: int = 8, qkv_bias: bool = False):
330
+ super().__init__()
331
+ self.num_heads = num_heads
332
+ head_dim = dim // num_heads
333
+
334
+ self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
335
+ self.norm = QKNorm(head_dim)
336
+ self.proj = nn.Linear(dim, dim)
337
+
338
+ def forward(self, x: Tensor, pe: Tensor) -> Tensor:
339
+ qkv = self.qkv(x)
340
+ # q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
341
+ B, L, _ = qkv.shape
342
+ qkv = qkv.view(B, L, 3, self.num_heads, -1)
343
+ q, k, v = qkv.permute(2, 0, 3, 1, 4)
344
+ q, k = self.norm(q, k, v)
345
+ x = attention(q, k, v, pe=pe)
346
+ x = self.proj(x)
347
+ return x
348
+
349
+
350
+ @dataclass
351
+ class ModulationOut:
352
+ shift: Tensor
353
+ scale: Tensor
354
+ gate: Tensor
355
+
356
+
357
+ class Modulation(nn.Module):
358
+ def __init__(self, dim: int, double: bool):
359
+ super().__init__()
360
+ self.is_double = double
361
+ self.multiplier = 6 if double else 3
362
+ self.lin = nn.Linear(dim, self.multiplier * dim, bias=True)
363
+
364
+ def forward(self, vec: Tensor) -> tuple[ModulationOut, ModulationOut | None]:
365
+ out = self.lin(nn.functional.silu(vec))[:, None, :].chunk(self.multiplier, dim=-1)
366
+
367
+ return (
368
+ ModulationOut(*out[:3]),
369
+ ModulationOut(*out[3:]) if self.is_double else None,
370
+ )
371
+
372
+
373
+ class DoubleStreamBlock(nn.Module):
374
+ def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False):
375
+ super().__init__()
376
+
377
+ mlp_hidden_dim = int(hidden_size * mlp_ratio)
378
+ self.num_heads = num_heads
379
+ self.hidden_size = hidden_size
380
+ self.img_mod = Modulation(hidden_size, double=True)
381
+ self.img_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
382
+ self.img_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias)
383
+
384
+ self.img_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
385
+ self.img_mlp = nn.Sequential(
386
+ nn.Linear(hidden_size, mlp_hidden_dim, bias=True),
387
+ nn.GELU(approximate="tanh"),
388
+ nn.Linear(mlp_hidden_dim, hidden_size, bias=True),
389
+ )
390
+
391
+ self.txt_mod = Modulation(hidden_size, double=True)
392
+ self.txt_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
393
+ self.txt_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias)
394
+
395
+ self.txt_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
396
+ self.txt_mlp = nn.Sequential(
397
+ nn.Linear(hidden_size, mlp_hidden_dim, bias=True),
398
+ nn.GELU(approximate="tanh"),
399
+ nn.Linear(mlp_hidden_dim, hidden_size, bias=True),
400
+ )
401
+
402
+ def forward(self, img: Tensor, txt: Tensor, vec: Tensor, pe: Tensor) -> tuple[Tensor, Tensor]:
403
+ img_mod1, img_mod2 = self.img_mod(vec)
404
+ txt_mod1, txt_mod2 = self.txt_mod(vec)
405
+
406
+ # prepare image for attention
407
+ img_modulated = self.img_norm1(img)
408
+ img_modulated = (1 + img_mod1.scale) * img_modulated + img_mod1.shift
409
+ img_qkv = self.img_attn.qkv(img_modulated)
410
+ # img_q, img_k, img_v = rearrange(img_qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
411
+ B, L, _ = img_qkv.shape
412
+ H = self.num_heads
413
+ D = img_qkv.shape[-1] // (3 * H)
414
+ img_q, img_k, img_v = img_qkv.view(B, L, 3, H, D).permute(2, 0, 3, 1, 4)
415
+ img_q, img_k = self.img_attn.norm(img_q, img_k, img_v)
416
+
417
+ # prepare txt for attention
418
+ txt_modulated = self.txt_norm1(txt)
419
+ txt_modulated = (1 + txt_mod1.scale) * txt_modulated + txt_mod1.shift
420
+ txt_qkv = self.txt_attn.qkv(txt_modulated)
421
+ # txt_q, txt_k, txt_v = rearrange(txt_qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
422
+ B, L, _ = txt_qkv.shape
423
+ txt_q, txt_k, txt_v = txt_qkv.view(B, L, 3, H, D).permute(2, 0, 3, 1, 4)
424
+ txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v)
425
+
426
+ # run actual attention
427
+ q = torch.cat((txt_q, img_q), dim=2)
428
+ k = torch.cat((txt_k, img_k), dim=2)
429
+ v = torch.cat((txt_v, img_v), dim=2)
430
+
431
+ attn = attention(q, k, v, pe=pe)
432
+ txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1] :]
433
+
434
+ # calculate the img bloks
435
+ img = img + img_mod1.gate * self.img_attn.proj(img_attn)
436
+ img = img + img_mod2.gate * self.img_mlp((1 + img_mod2.scale) * self.img_norm2(img) + img_mod2.shift)
437
+
438
+ # calculate the txt bloks
439
+ txt = txt + txt_mod1.gate * self.txt_attn.proj(txt_attn)
440
+ txt = txt + txt_mod2.gate * self.txt_mlp((1 + txt_mod2.scale) * self.txt_norm2(txt) + txt_mod2.shift)
441
+ return img, txt
442
+
443
+
444
+ class SingleStreamBlock(nn.Module):
445
+ """
446
+ A DiT block with parallel linear layers as described in
447
+ https://arxiv.org/abs/2302.05442 and adapted modulation interface.
448
+ """
449
+
450
+ def __init__(
451
+ self,
452
+ hidden_size: int,
453
+ num_heads: int,
454
+ mlp_ratio: float = 4.0,
455
+ qk_scale: float | None = None,
456
+ ):
457
+ super().__init__()
458
+ self.hidden_dim = hidden_size
459
+ self.num_heads = num_heads
460
+ head_dim = hidden_size // num_heads
461
+ self.scale = qk_scale or head_dim**-0.5
462
+
463
+ self.mlp_hidden_dim = int(hidden_size * mlp_ratio)
464
+ # qkv and mlp_in
465
+ self.linear1 = nn.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim)
466
+ # proj and mlp_out
467
+ self.linear2 = nn.Linear(hidden_size + self.mlp_hidden_dim, hidden_size)
468
+
469
+ self.norm = QKNorm(head_dim)
470
+
471
+ self.hidden_size = hidden_size
472
+ self.pre_norm = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
473
+
474
+ self.mlp_act = nn.GELU(approximate="tanh")
475
+ self.modulation = Modulation(hidden_size, double=False)
476
+
477
+ def forward(self, x: Tensor, vec: Tensor, pe: Tensor) -> Tensor:
478
+ mod, _ = self.modulation(vec)
479
+ x_mod = (1 + mod.scale) * self.pre_norm(x) + mod.shift
480
+ qkv, mlp = torch.split(self.linear1(x_mod), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1)
481
+
482
+ # q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
483
+ qkv = qkv.view(qkv.size(0), qkv.size(1), 3, self.num_heads, self.hidden_size // self.num_heads)
484
+ q, k, v = qkv.permute(2, 0, 3, 1, 4)
485
+ q, k = self.norm(q, k, v)
486
+
487
+ # compute attention
488
+ attn = attention(q, k, v, pe=pe)
489
+ # compute activation in mlp stream, cat again and run second linear layer
490
+ output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2))
491
+ return x + mod.gate * output
492
+
493
+
494
+ class LastLayer(nn.Module):
495
+ def __init__(self, hidden_size: int, patch_size: int, out_channels: int):
496
+ super().__init__()
497
+ self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
498
+ self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True)
499
+ self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(hidden_size, 2 * hidden_size, bias=True))
500
+
501
+ def forward(self, x: Tensor, vec: Tensor) -> Tensor:
502
+ shift, scale = self.adaLN_modulation(vec).chunk(2, dim=1)
503
+ x = (1 + scale[:, None, :]) * self.norm_final(x) + shift[:, None, :]
504
+ x = self.linear(x)
505
+ return x
506
+
507
+
508
+ class FluxParams:
509
+ in_channels: int = 64
510
+ vec_in_dim: int = 768
511
+ context_in_dim: int = 4096
512
+ hidden_size: int = 3072
513
+ mlp_ratio: float = 4.0
514
+ num_heads: int = 24
515
+ depth: int = 19
516
+ depth_single_blocks: int = 38
517
+ axes_dim: list = [16, 56, 56]
518
+ theta: int = 10_000
519
+ qkv_bias: bool = True
520
+ guidance_embed: bool = True
521
+
522
+
523
+ class Flux(nn.Module):
524
+ """
525
+ Transformer model for flow matching on sequences.
526
+ """
527
+
528
+ def __init__(self, params = FluxParams()):
529
+ super().__init__()
530
+
531
+ self.params = params
532
+ self.in_channels = params.in_channels
533
+ self.out_channels = self.in_channels
534
+ if params.hidden_size % params.num_heads != 0:
535
+ raise ValueError(
536
+ f"Hidden size {params.hidden_size} must be divisible by num_heads {params.num_heads}"
537
+ )
538
+ pe_dim = params.hidden_size // params.num_heads
539
+ if sum(params.axes_dim) != pe_dim:
540
+ raise ValueError(f"Got {params.axes_dim} but expected positional dim {pe_dim}")
541
+ self.hidden_size = params.hidden_size
542
+ self.num_heads = params.num_heads
543
+ self.pe_embedder = EmbedND(dim=pe_dim, theta=params.theta, axes_dim=params.axes_dim)
544
+ self.img_in = nn.Linear(self.in_channels, self.hidden_size, bias=True)
545
+ self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size)
546
+ self.vector_in = MLPEmbedder(params.vec_in_dim, self.hidden_size)
547
+ self.guidance_in = (
548
+ MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size) if params.guidance_embed else nn.Identity()
549
+ )
550
+ self.txt_in = nn.Linear(params.context_in_dim, self.hidden_size)
551
+
552
+ self.double_blocks = nn.ModuleList(
553
+ [
554
+ DoubleStreamBlock(
555
+ self.hidden_size,
556
+ self.num_heads,
557
+ mlp_ratio=params.mlp_ratio,
558
+ qkv_bias=params.qkv_bias,
559
+ )
560
+ for _ in range(params.depth)
561
+ ]
562
+ )
563
+
564
+ self.single_blocks = nn.ModuleList(
565
+ [
566
+ SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio)
567
+ for _ in range(params.depth_single_blocks)
568
+ ]
569
+ )
570
+
571
+ self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels)
572
+
573
+ def forward(
574
+ self,
575
+ img: Tensor,
576
+ img_ids: Tensor,
577
+ txt: Tensor,
578
+ txt_ids: Tensor,
579
+ timesteps: Tensor,
580
+ y: Tensor,
581
+ guidance: Tensor | None = None,
582
+ ) -> Tensor:
583
+ if img.ndim != 3 or txt.ndim != 3:
584
+ raise ValueError("Input img and txt tensors must have 3 dimensions.")
585
+
586
+ # running on sequences img
587
+ img = self.img_in(img)
588
+ vec = self.time_in(timestep_embedding(timesteps, 256))
589
+ if self.params.guidance_embed:
590
+ if guidance is None:
591
+ raise ValueError("Didn't get guidance strength for guidance distilled model.")
592
+ vec = vec + self.guidance_in(timestep_embedding(guidance, 256))
593
+ vec = vec + self.vector_in(y)
594
+ txt = self.txt_in(txt)
595
+
596
+ ids = torch.cat((txt_ids, img_ids), dim=1)
597
+ pe = self.pe_embedder(ids)
598
+
599
+ for block in self.double_blocks:
600
+ img, txt = block(img=img, txt=txt, vec=vec, pe=pe)
601
+
602
+ img = torch.cat((txt, img), 1)
603
+ for block in self.single_blocks:
604
+ img = block(img, vec=vec, pe=pe)
605
+ img = img[:, txt.shape[1] :, ...]
606
+
607
+ img = self.final_layer(img, vec) # (N, T, patch_size ** 2 * out_channels)
608
+ return img
609
+
610
+
611
+ def prepare(t5: HFEmbedder, clip: HFEmbedder, img: Tensor, prompt: str | list[str]) -> dict[str, Tensor]:
612
+ bs, c, h, w = img.shape
613
+ if bs == 1 and not isinstance(prompt, str):
614
+ bs = len(prompt)
615
+
616
+ img = rearrange(img, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2)
617
+ if img.shape[0] == 1 and bs > 1:
618
+ img = repeat(img, "1 ... -> bs ...", bs=bs)
619
+
620
+ img_ids = torch.zeros(h // 2, w // 2, 3)
621
+ img_ids[..., 1] = img_ids[..., 1] + torch.arange(h // 2)[:, None]
622
+ img_ids[..., 2] = img_ids[..., 2] + torch.arange(w // 2)[None, :]
623
+ img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs)
624
+
625
+ if isinstance(prompt, str):
626
+ prompt = [prompt]
627
+ txt = t5(prompt)
628
+ if txt.shape[0] == 1 and bs > 1:
629
+ txt = repeat(txt, "1 ... -> bs ...", bs=bs)
630
+ txt_ids = torch.zeros(bs, txt.shape[1], 3)
631
+
632
+ vec = clip(prompt)
633
+ if vec.shape[0] == 1 and bs > 1:
634
+ vec = repeat(vec, "1 ... -> bs ...", bs=bs)
635
+
636
+ return {
637
+ "img": img,
638
+ "img_ids": img_ids.to(img.device),
639
+ "txt": txt.to(img.device),
640
+ "txt_ids": txt_ids.to(img.device),
641
+ "vec": vec.to(img.device),
642
+ }
643
+
644
+
645
+ def time_shift(mu: float, sigma: float, t: Tensor):
646
+ return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma)
647
+
648
+
649
+ def get_lin_function(
650
+ x1: float = 256, y1: float = 0.5, x2: float = 4096, y2: float = 1.15
651
+ ) -> Callable[[float], float]:
652
+ m = (y2 - y1) / (x2 - x1)
653
+ b = y1 - m * x1
654
+ return lambda x: m * x + b
655
+
656
+
657
+ def get_schedule(
658
+ num_steps: int,
659
+ image_seq_len: int,
660
+ base_shift: float = 0.5,
661
+ max_shift: float = 1.15,
662
+ shift: bool = True,
663
+ ) -> list[float]:
664
+ # extra step for zero
665
+ timesteps = torch.linspace(1, 0, num_steps + 1)
666
+
667
+ # shifting the schedule to favor high timesteps for higher signal images
668
+ if shift:
669
+ # eastimate mu based on linear estimation between two points
670
+ mu = get_lin_function(y1=base_shift, y2=max_shift)(image_seq_len)
671
+ timesteps = time_shift(mu, 1.0, timesteps)
672
+
673
+ return timesteps.tolist()
674
+
675
+
676
+ def denoise(
677
+ model: Flux,
678
+ # model input
679
+ img: Tensor,
680
+ img_ids: Tensor,
681
+ txt: Tensor,
682
+ txt_ids: Tensor,
683
+ vec: Tensor,
684
+ # sampling parameters
685
+ timesteps: list[float],
686
+ guidance: float = 4.0,
687
+ ):
688
+ # this is ignored for schnell
689
+ guidance_vec = torch.full((img.shape[0],), guidance, device=img.device, dtype=img.dtype)
690
+ for t_curr, t_prev in tqdm(zip(timesteps[:-1], timesteps[1:]), total=len(timesteps) - 1):
691
+ t_vec = torch.full((img.shape[0],), t_curr, dtype=img.dtype, device=img.device)
692
+ pred = model(
693
+ img=img,
694
+ img_ids=img_ids,
695
+ txt=txt,
696
+ txt_ids=txt_ids,
697
+ y=vec,
698
+ timesteps=t_vec,
699
+ guidance=guidance_vec,
700
+ )
701
+ img = img + (t_prev - t_curr) * pred
702
+ return img
703
+
704
+
705
+ def unpack(x: Tensor, height: int, width: int) -> Tensor:
706
+ return rearrange(
707
+ x,
708
+ "b (h w) (c ph pw) -> b c (h ph) (w pw)",
709
+ h=math.ceil(height / 16),
710
+ w=math.ceil(width / 16),
711
+ ph=2,
712
+ pw=2,
713
+ )
714
+
715
+ @dataclass
716
+ class SamplingOptions:
717
+ prompt: str
718
+ width: int
719
+ height: int
720
+ guidance: float
721
+ seed: int | None
722
+
723
+
724
+ def get_image(image) -> torch.Tensor | None:
725
+ if image is None:
726
+ return None
727
+ image = Image.fromarray(image).convert("RGB")
728
+
729
+ transform = transforms.Compose([
730
+ transforms.ToTensor(),
731
+ transforms.Lambda(lambda x: 2.0 * x - 1.0),
732
+ ])
733
+ img: torch.Tensor = transform(image)
734
+ return img[None, ...]
735
+
736
+
737
+ # ---------------- Demo ----------------
738
+
739
+
740
+ from huggingface_hub import hf_hub_download
741
+ from safetensors.torch import load_file
742
+
743
+ sd = load_file(hf_hub_download(repo_id="lllyasviel/flux1-dev-bnb-nf4", filename="flux1-dev-bnb-nf4-v2.safetensors"))
744
+ sd = {k.replace("model.diffusion_model.", ""): v for k, v in sd.items() if "model.diffusion_model" in k}
745
+ model = Flux().to(dtype=torch.bfloat16, device="cuda")
746
+ result = model.load_state_dict(sd)
747
+ model_zero_init = False
748
+
749
+
750
+
751
+ ko_translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
752
+ ja_translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ja-en")
753
+ zh_translator = pipeline("translation", model="Helsinki-NLP/opus-mt-zh-en")
754
+
755
+
756
+
757
+ @spaces.GPU
758
+ @torch.no_grad()
759
+ def generate_image(
760
+ prompt, width, height, guidance, inference_steps, seed,
761
+ do_img2img, init_image, image2image_strength, resize_img,
762
+ progress=gr.Progress(track_tqdm=True),
763
+ ):
764
+ translated_prompt = prompt
765
+
766
+ # 한글, 일본어, 중국어 문자 감지
767
+ def contains_korean(text):
768
+ return any('\u3131' <= c <= '\u318E' or '\uAC00' <= c <= '\uD7A3' for c in text)
769
+
770
+ def contains_japanese(text):
771
+ return any('\u3040' <= c <= '\u309F' or '\u30A0' <= c <= '\u30FF' or '\u4E00' <= c <= '\u9FFF' for c in text)
772
+
773
+ def contains_chinese(text):
774
+ return any('\u4e00' <= c <= '\u9fff' for c in text)
775
+
776
+ # 한글, 일본어, 중국어가 있으면 번역
777
+ if contains_korean(prompt):
778
+ translated_prompt = ko_translator(prompt, max_length=512)[0]['translation_text']
779
+ print(f"Translated Korean prompt: {translated_prompt}")
780
+ prompt = translated_prompt
781
+ elif contains_japanese(prompt):
782
+ translated_prompt = ja_translator(prompt, max_length=512)[0]['translation_text']
783
+ print(f"Translated Japanese prompt: {translated_prompt}")
784
+ prompt = translated_prompt
785
+ elif contains_chinese(prompt):
786
+ translated_prompt = zh_translator(prompt, max_length=512)[0]['translation_text']
787
+ print(f"Translated Chinese prompt: {translated_prompt}")
788
+ prompt = translated_prompt
789
+
790
+
791
+
792
+
793
+
794
+ if seed == 0:
795
+ seed = int(random.random() * 1000000)
796
+
797
+ device = "cuda" if torch.cuda.is_available() else "cpu"
798
+ torch_device = torch.device(device)
799
+
800
+
801
+
802
+ global model, model_zero_init
803
+ if not model_zero_init:
804
+ model = model.to(torch_device)
805
+ model_zero_init = True
806
+
807
+ if do_img2img and init_image is not None:
808
+ init_image = get_image(init_image)
809
+ if resize_img:
810
+ init_image = torch.nn.functional.interpolate(init_image, (height, width))
811
+ else:
812
+ h, w = init_image.shape[-2:]
813
+ init_image = init_image[..., : 16 * (h // 16), : 16 * (w // 16)]
814
+ height = init_image.shape[-2]
815
+ width = init_image.shape[-1]
816
+ init_image = ae.encode(init_image.to(torch_device).to(torch.bfloat16)).latent_dist.sample()
817
+ init_image = (init_image - ae.config.shift_factor) * ae.config.scaling_factor
818
+
819
+ generator = torch.Generator(device=device).manual_seed(seed)
820
+ x = torch.randn(1, 16, 2 * math.ceil(height / 16), 2 * math.ceil(width / 16), device=device, dtype=torch.bfloat16, generator=generator)
821
+
822
+ num_steps = inference_steps
823
+ timesteps = get_schedule(num_steps, (x.shape[-1] * x.shape[-2]) // 4, shift=True)
824
+
825
+ if do_img2img and init_image is not None:
826
+ t_idx = int((1 - image2image_strength) * num_steps)
827
+ t = timesteps[t_idx]
828
+ timesteps = timesteps[t_idx:]
829
+ x = t * x + (1.0 - t) * init_image.to(x.dtype)
830
+
831
+ inp = prepare(t5=t5, clip=clip, img=x, prompt=prompt)
832
+ x = denoise(model, **inp, timesteps=timesteps, guidance=guidance)
833
+
834
+ # with profile(activities=[ProfilerActivity.CPU],record_shapes=True,profile_memory=True) as prof:
835
+ # print(prof.key_averages().table(sort_by="cpu_time_total", row_limit=20))
836
+
837
+ x = unpack(x.float(), height, width)
838
+ with torch.autocast(device_type=torch_device.type, dtype=torch.bfloat16):
839
+ x = x = (x / ae.config.scaling_factor) + ae.config.shift_factor
840
+ x = ae.decode(x).sample
841
+
842
+ x = x.clamp(-1, 1)
843
+ x = rearrange(x[0], "c h w -> h w c")
844
+ img = Image.fromarray((127.5 * (x + 1.0)).cpu().byte().numpy())
845
+
846
+
847
+ return img, seed, translated_prompt
848
+
849
+ css = """
850
+ footer {
851
+ visibility: hidden;
852
+ }
853
+ """
854
+
855
+
856
+ def create_demo():
857
+ with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo:
858
+
859
+ with gr.Row():
860
+ with gr.Column():
861
+ prompt = gr.Textbox(label="Prompt(한글 가능)", value="A cute and fluffy golden retriever puppy sitting upright, holding a neatly designed white sign with bold, colorful lettering that reads 'Have a Happy Day!' in cheerful fonts. The puppy has expressive, sparkling eyes, a happy smile, and fluffy ears slightly flopped. The background is a vibrant and sunny meadow with soft-focus flowers, glowing sunlight filtering through the trees, and a warm golden glow that enhances the joyful atmosphere. The sign is framed with small decorative flowers, adding a charming and wholesome touch. Ensure the text on the sign is clear and legible.")
862
+
863
+ width = gr.Slider(minimum=128, maximum=2048, step=64, label="Width", value=768)
864
+ height = gr.Slider(minimum=128, maximum=2048, step=64, label="Height", value=768)
865
+ guidance = gr.Slider(minimum=1.0, maximum=5.0, step=0.1, label="Guidance", value=3.5)
866
+ inference_steps = gr.Slider(
867
+ label="Inference steps",
868
+ minimum=1,
869
+ maximum=30,
870
+ step=1,
871
+ value=30,
872
+ )
873
+ seed = gr.Number(label="Seed", precision=-1)
874
+ do_img2img = gr.Checkbox(label="Image to Image", value=False)
875
+ init_image = gr.Image(label="Input Image", visible=False)
876
+ image2image_strength = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label="Noising strength", value=0.8, visible=False)
877
+ resize_img = gr.Checkbox(label="Resize image", value=True, visible=False)
878
+ generate_button = gr.Button("Generate")
879
+
880
+ with gr.Column():
881
+ output_image = gr.Image(label="Generated Image")
882
+ output_seed = gr.Text(label="Used Seed")
883
+
884
+ do_img2img.change(
885
+ fn=lambda x: [gr.update(visible=x), gr.update(visible=x), gr.update(visible=x)],
886
+ inputs=[do_img2img],
887
+ outputs=[init_image, image2image_strength, resize_img]
888
+ )
889
+
890
+ generate_button.click(
891
+ fn=generate_image,
892
+ inputs=[prompt, width, height, guidance, inference_steps, seed, do_img2img, init_image, image2image_strength, resize_img],
893
+ outputs=[output_image, output_seed]
894
+ )
895
+
896
+ examples = [
897
+ "a tiny astronaut hatching from an egg on the moon",
898
+ "a cat holding a sign that says hello world",
899
+ "an anime illustration of a wiener schnitzel",
900
+ ]
901
+
902
+ return demo
903
+
904
+ if __name__ == "__main__":
905
+ demo = create_demo()
906
+ demo.launch()