Update app.py
Browse files
app.py
CHANGED
|
@@ -1,349 +1,2 @@
|
|
| 1 |
-
import tempfile
|
| 2 |
-
import time
|
| 3 |
-
from collections.abc import Sequence
|
| 4 |
-
from typing import Any, cast
|
| 5 |
import os
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
import gradio as gr
|
| 9 |
-
import numpy as np
|
| 10 |
-
import pillow_heif
|
| 11 |
-
import spaces
|
| 12 |
-
import torch
|
| 13 |
-
from gradio_image_annotation import image_annotator
|
| 14 |
-
from gradio_imageslider import ImageSlider
|
| 15 |
-
from PIL import Image
|
| 16 |
-
from pymatting.foreground.estimate_foreground_ml import estimate_foreground_ml
|
| 17 |
-
from refiners.fluxion.utils import no_grad
|
| 18 |
-
from refiners.solutions import BoxSegmenter
|
| 19 |
-
from transformers import GroundingDinoForObjectDetection, GroundingDinoProcessor
|
| 20 |
-
from diffusers import FluxPipeline
|
| 21 |
-
|
| 22 |
-
BoundingBox = tuple[int, int, int, int]
|
| 23 |
-
|
| 24 |
-
# 초기화 및 설정
|
| 25 |
-
pillow_heif.register_heif_opener()
|
| 26 |
-
pillow_heif.register_avif_opener()
|
| 27 |
-
|
| 28 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 29 |
-
|
| 30 |
-
# HF 토큰 설정
|
| 31 |
-
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 32 |
-
if HF_TOKEN is None:
|
| 33 |
-
raise ValueError("Please set the HF_TOKEN environment variable")
|
| 34 |
-
|
| 35 |
-
try:
|
| 36 |
-
login(token=HF_TOKEN)
|
| 37 |
-
except Exception as e:
|
| 38 |
-
raise ValueError(f"Failed to login to Hugging Face: {str(e)}")
|
| 39 |
-
|
| 40 |
-
# 모델 초기화
|
| 41 |
-
segmenter = BoxSegmenter(device="cpu")
|
| 42 |
-
segmenter.device = device
|
| 43 |
-
segmenter.model = segmenter.model.to(device=segmenter.device)
|
| 44 |
-
|
| 45 |
-
gd_model_path = "IDEA-Research/grounding-dino-base"
|
| 46 |
-
gd_processor = GroundingDinoProcessor.from_pretrained(gd_model_path)
|
| 47 |
-
gd_model = GroundingDinoForObjectDetection.from_pretrained(gd_model_path, torch_dtype=torch.float32)
|
| 48 |
-
gd_model = gd_model.to(device=device)
|
| 49 |
-
assert isinstance(gd_model, GroundingDinoForObjectDetection)
|
| 50 |
-
|
| 51 |
-
# FLUX 파이프라인 초기화
|
| 52 |
-
pipe = FluxPipeline.from_pretrained(
|
| 53 |
-
"black-forest-labs/FLUX.1-dev",
|
| 54 |
-
torch_dtype=torch.bfloat16,
|
| 55 |
-
use_auth_token=HF_TOKEN
|
| 56 |
-
)
|
| 57 |
-
pipe.load_lora_weights(
|
| 58 |
-
hf_hub_download(
|
| 59 |
-
"ByteDance/Hyper-SD",
|
| 60 |
-
"Hyper-FLUX.1-dev-8steps-lora.safetensors",
|
| 61 |
-
use_auth_token=HF_TOKEN
|
| 62 |
-
)
|
| 63 |
-
)
|
| 64 |
-
pipe.fuse_lora(lora_scale=0.125)
|
| 65 |
-
pipe.to(device="cuda", dtype=torch.bfloat16)
|
| 66 |
-
|
| 67 |
-
def bbox_union(bboxes: Sequence[list[int]]) -> BoundingBox | None:
|
| 68 |
-
if not bboxes:
|
| 69 |
-
return None
|
| 70 |
-
for bbox in bboxes:
|
| 71 |
-
assert len(bbox) == 4
|
| 72 |
-
assert all(isinstance(x, int) for x in bbox)
|
| 73 |
-
return (
|
| 74 |
-
min(bbox[0] for bbox in bboxes),
|
| 75 |
-
min(bbox[1] for bbox in bboxes),
|
| 76 |
-
max(bbox[2] for bbox in bboxes),
|
| 77 |
-
max(bbox[3] for bbox in bboxes),
|
| 78 |
-
)
|
| 79 |
-
|
| 80 |
-
def corners_to_pixels_format(bboxes: torch.Tensor, width: int, height: int) -> torch.Tensor:
|
| 81 |
-
x1, y1, x2, y2 = bboxes.round().to(torch.int32).unbind(-1)
|
| 82 |
-
return torch.stack((x1.clamp_(0, width), y1.clamp_(0, height), x2.clamp_(0, width), y2.clamp_(0, height)), dim=-1)
|
| 83 |
-
|
| 84 |
-
def gd_detect(img: Image.Image, prompt: str) -> BoundingBox | None:
|
| 85 |
-
inputs = gd_processor(images=img, text=f"{prompt}.", return_tensors="pt").to(device=device)
|
| 86 |
-
with no_grad():
|
| 87 |
-
outputs = gd_model(**inputs)
|
| 88 |
-
width, height = img.size
|
| 89 |
-
results: dict[str, Any] = gd_processor.post_process_grounded_object_detection(
|
| 90 |
-
outputs,
|
| 91 |
-
inputs["input_ids"],
|
| 92 |
-
target_sizes=[(height, width)],
|
| 93 |
-
)[0]
|
| 94 |
-
assert "boxes" in results and isinstance(results["boxes"], torch.Tensor)
|
| 95 |
-
bboxes = corners_to_pixels_format(results["boxes"].cpu(), width, height)
|
| 96 |
-
return bbox_union(bboxes.numpy().tolist())
|
| 97 |
-
|
| 98 |
-
def apply_mask(img: Image.Image, mask_img: Image.Image, defringe: bool = True) -> Image.Image:
|
| 99 |
-
assert img.size == mask_img.size
|
| 100 |
-
img = img.convert("RGB")
|
| 101 |
-
mask_img = mask_img.convert("L")
|
| 102 |
-
if defringe:
|
| 103 |
-
rgb, alpha = np.asarray(img) / 255.0, np.asarray(mask_img) / 255.0
|
| 104 |
-
foreground = cast(np.ndarray[Any, np.dtype[np.uint8]], estimate_foreground_ml(rgb, alpha))
|
| 105 |
-
img = Image.fromarray((foreground * 255).astype("uint8"))
|
| 106 |
-
result = Image.new("RGBA", img.size)
|
| 107 |
-
result.paste(img, (0, 0), mask_img)
|
| 108 |
-
return result
|
| 109 |
-
|
| 110 |
-
def generate_background(prompt: str, width: int, height: int) -> Image.Image:
|
| 111 |
-
"""배경 이미지 생성 함수"""
|
| 112 |
-
try:
|
| 113 |
-
with timer("Background generation"):
|
| 114 |
-
image = pipe(
|
| 115 |
-
prompt=prompt,
|
| 116 |
-
width=width,
|
| 117 |
-
height=height,
|
| 118 |
-
num_inference_steps=8,
|
| 119 |
-
guidance_scale=4.0,
|
| 120 |
-
).images[0]
|
| 121 |
-
return image
|
| 122 |
-
except Exception as e:
|
| 123 |
-
raise gr.Error(f"Background generation failed: {str(e)}")
|
| 124 |
-
|
| 125 |
-
def combine_with_background(foreground: Image.Image, background: Image.Image) -> Image.Image:
|
| 126 |
-
"""전경과 배경 합성 함수"""
|
| 127 |
-
background = background.resize(foreground.size)
|
| 128 |
-
return Image.alpha_composite(background.convert('RGBA'), foreground)
|
| 129 |
-
|
| 130 |
-
@spaces.GPU
|
| 131 |
-
def _gpu_process(img: Image.Image, prompt: str | BoundingBox | None) -> tuple[Image.Image, BoundingBox | None, list[str]]:
|
| 132 |
-
time_log: list[str] = []
|
| 133 |
-
if isinstance(prompt, str):
|
| 134 |
-
t0 = time.time()
|
| 135 |
-
bbox = gd_detect(img, prompt)
|
| 136 |
-
time_log.append(f"detect: {time.time() - t0}")
|
| 137 |
-
if not bbox:
|
| 138 |
-
print(time_log[0])
|
| 139 |
-
raise gr.Error("No object detected")
|
| 140 |
-
else:
|
| 141 |
-
bbox = prompt
|
| 142 |
-
t0 = time.time()
|
| 143 |
-
mask = segmenter(img, bbox)
|
| 144 |
-
time_log.append(f"segment: {time.time() - t0}")
|
| 145 |
-
return mask, bbox, time_log
|
| 146 |
-
|
| 147 |
-
def _process(img: Image.Image, prompt: str | BoundingBox | None, bg_prompt: str | None = None) -> tuple[tuple[Image.Image, Image.Image, Image.Image], gr.DownloadButton]:
|
| 148 |
-
if img.width > 2048 or img.height > 2048:
|
| 149 |
-
orig_res = max(img.width, img.height)
|
| 150 |
-
img.thumbnail((2048, 2048))
|
| 151 |
-
if isinstance(prompt, tuple):
|
| 152 |
-
x0, y0, x1, y1 = (int(x * 2048 / orig_res) for x in prompt)
|
| 153 |
-
prompt = (x0, y0, x1, y1)
|
| 154 |
-
|
| 155 |
-
mask, bbox, time_log = _gpu_process(img, prompt)
|
| 156 |
-
masked_alpha = apply_mask(img, mask, defringe=True)
|
| 157 |
-
|
| 158 |
-
if bg_prompt:
|
| 159 |
-
try:
|
| 160 |
-
background = generate_background(bg_prompt, img.width, img.height)
|
| 161 |
-
combined = combine_with_background(masked_alpha, background)
|
| 162 |
-
except Exception as e:
|
| 163 |
-
raise gr.Error(f"Background processing failed: {str(e)}")
|
| 164 |
-
else:
|
| 165 |
-
combined = Image.alpha_composite(Image.new("RGBA", masked_alpha.size, "white"), masked_alpha)
|
| 166 |
-
|
| 167 |
-
thresholded = mask.point(lambda p: 255 if p > 10 else 0)
|
| 168 |
-
bbox = thresholded.getbbox()
|
| 169 |
-
to_dl = masked_alpha.crop(bbox)
|
| 170 |
-
|
| 171 |
-
temp = tempfile.NamedTemporaryFile(delete=False, suffix=".png")
|
| 172 |
-
to_dl.save(temp, format="PNG")
|
| 173 |
-
temp.close()
|
| 174 |
-
|
| 175 |
-
return (img, combined, masked_alpha), gr.DownloadButton(value=temp.name, interactive=True)
|
| 176 |
-
|
| 177 |
-
def process_bbox(prompts: dict[str, Any]) -> tuple[tuple[Image.Image, Image.Image], gr.DownloadButton]:
|
| 178 |
-
assert isinstance(img := prompts["image"], Image.Image)
|
| 179 |
-
assert isinstance(boxes := prompts["boxes"], list)
|
| 180 |
-
if len(boxes) == 1:
|
| 181 |
-
assert isinstance(box := boxes[0], dict)
|
| 182 |
-
bbox = tuple(box[k] for k in ["xmin", "ymin", "xmax", "ymax"])
|
| 183 |
-
else:
|
| 184 |
-
assert len(boxes) == 0
|
| 185 |
-
bbox = None
|
| 186 |
-
return _process(img, bbox)
|
| 187 |
-
|
| 188 |
-
def on_change_bbox(prompts: dict[str, Any] | None):
|
| 189 |
-
return gr.update(interactive=prompts is not None)
|
| 190 |
-
|
| 191 |
-
def process_prompt(img: Image.Image, prompt: str, bg_prompt: str | None = None) -> tuple[tuple[Image.Image, Image.Image], gr.DownloadButton]:
|
| 192 |
-
return _process(img, prompt, bg_prompt)
|
| 193 |
-
|
| 194 |
-
def on_change_prompt(img: Image.Image | None, prompt: str | None, bg_prompt: str | None = None):
|
| 195 |
-
return gr.update(interactive=bool(img and prompt))
|
| 196 |
-
|
| 197 |
-
# CSS 스타일 정의
|
| 198 |
-
css = """
|
| 199 |
-
footer {display: none}
|
| 200 |
-
.main-title {
|
| 201 |
-
text-align: center;
|
| 202 |
-
margin: 2em 0;
|
| 203 |
-
}
|
| 204 |
-
.main-title h1 {
|
| 205 |
-
color: #2196F3;
|
| 206 |
-
font-size: 2.5em;
|
| 207 |
-
}
|
| 208 |
-
.container {
|
| 209 |
-
max-width: 1200px;
|
| 210 |
-
margin: auto;
|
| 211 |
-
padding: 20px;
|
| 212 |
-
}
|
| 213 |
-
"""
|
| 214 |
-
|
| 215 |
-
# Gradio UI
|
| 216 |
-
with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
|
| 217 |
-
gr.HTML("""
|
| 218 |
-
<div class="main-title">
|
| 219 |
-
<h1>🎨 Advanced Image Object Extractor</h1>
|
| 220 |
-
<p>Extract objects from images using text prompts or bounding boxes</p>
|
| 221 |
-
</div>
|
| 222 |
-
""")
|
| 223 |
-
|
| 224 |
-
with gr.Tabs() as tabs:
|
| 225 |
-
with gr.Tab("✨ Extract by Text", id="tab_prompt"):
|
| 226 |
-
with gr.Row(equal_height=True):
|
| 227 |
-
with gr.Column(scale=1, min_width=400):
|
| 228 |
-
gr.HTML("<h3>📥 Input Section</h3>")
|
| 229 |
-
iimg = gr.Image(
|
| 230 |
-
type="pil",
|
| 231 |
-
label="Upload Image"
|
| 232 |
-
)
|
| 233 |
-
with gr.Group():
|
| 234 |
-
prompt = gr.Textbox(
|
| 235 |
-
label="🎯 Object to Extract",
|
| 236 |
-
placeholder="Enter what you want to extract..."
|
| 237 |
-
)
|
| 238 |
-
bg_prompt = gr.Textbox(
|
| 239 |
-
label="🖼️ Background Generation Prompt (optional)",
|
| 240 |
-
placeholder="Describe the background you want..."
|
| 241 |
-
)
|
| 242 |
-
btn = gr.Button(
|
| 243 |
-
"🚀 Process Image",
|
| 244 |
-
variant="primary",
|
| 245 |
-
interactive=False
|
| 246 |
-
)
|
| 247 |
-
|
| 248 |
-
with gr.Column(scale=1, min_width=400):
|
| 249 |
-
gr.HTML("<h3>📤 Output Section</h3>")
|
| 250 |
-
oimg = ImageSlider(
|
| 251 |
-
label="Results Preview",
|
| 252 |
-
show_download_button=False
|
| 253 |
-
)
|
| 254 |
-
dlbt = gr.DownloadButton(
|
| 255 |
-
"💾 Download Result",
|
| 256 |
-
interactive=False
|
| 257 |
-
)
|
| 258 |
-
|
| 259 |
-
with gr.Accordion("📚 Examples", open=False):
|
| 260 |
-
examples = [
|
| 261 |
-
["examples/text.jpg", "text", "white background"],
|
| 262 |
-
["examples/black-lamp.jpg", "black lamp", "minimalist interior"]
|
| 263 |
-
]
|
| 264 |
-
ex = gr.Examples(
|
| 265 |
-
examples=examples,
|
| 266 |
-
inputs=[iimg, prompt, bg_prompt],
|
| 267 |
-
outputs=[oimg, dlbt],
|
| 268 |
-
fn=process_prompt,
|
| 269 |
-
cache_examples=True
|
| 270 |
-
)
|
| 271 |
-
|
| 272 |
-
with gr.Tab("📏 Extract by Box", id="tab_bb"):
|
| 273 |
-
with gr.Row(equal_height=True):
|
| 274 |
-
with gr.Column(scale=1, min_width=400):
|
| 275 |
-
gr.HTML("<h3>📥 Input Section</h3>")
|
| 276 |
-
annotator = image_annotator(
|
| 277 |
-
image_type="pil",
|
| 278 |
-
disable_edit_boxes=True,
|
| 279 |
-
show_download_button=False,
|
| 280 |
-
show_share_button=False,
|
| 281 |
-
single_box=True,
|
| 282 |
-
label="Draw Box Around Object"
|
| 283 |
-
)
|
| 284 |
-
btn_bb = gr.Button(
|
| 285 |
-
"✂️ Extract Selection",
|
| 286 |
-
variant="primary",
|
| 287 |
-
interactive=False
|
| 288 |
-
)
|
| 289 |
-
|
| 290 |
-
with gr.Column(scale=1, min_width=400):
|
| 291 |
-
gr.HTML("<h3>📤 Output Section</h3>")
|
| 292 |
-
oimg_bb = ImageSlider(
|
| 293 |
-
label="Results Preview",
|
| 294 |
-
show_download_button=False
|
| 295 |
-
)
|
| 296 |
-
dlbt_bb = gr.DownloadButton(
|
| 297 |
-
"💾 Download Result",
|
| 298 |
-
interactive=False
|
| 299 |
-
)
|
| 300 |
-
|
| 301 |
-
with gr.Accordion("📚 Examples", open=False):
|
| 302 |
-
examples_bb = [
|
| 303 |
-
["examples/text.jpg", [{"xmin": 51, "ymin": 511, "xmax": 639, "ymax": 1255}]],
|
| 304 |
-
["examples/black-lamp.jpg", [{"xmin": 88, "ymin": 148, "xmax": 700, "ymax": 1414}]]
|
| 305 |
-
]
|
| 306 |
-
ex_bb = gr.Examples(
|
| 307 |
-
examples=examples_bb,
|
| 308 |
-
inputs=[annotator],
|
| 309 |
-
outputs=[oimg_bb, dlbt_bb],
|
| 310 |
-
fn=process_bbox,
|
| 311 |
-
cache_examples=True
|
| 312 |
-
)
|
| 313 |
-
|
| 314 |
-
# Event handlers
|
| 315 |
-
btn.add(oimg)
|
| 316 |
-
for inp in [iimg, prompt]:
|
| 317 |
-
inp.change(
|
| 318 |
-
fn=on_change_prompt,
|
| 319 |
-
inputs=[iimg, prompt, bg_prompt],
|
| 320 |
-
outputs=[btn],
|
| 321 |
-
)
|
| 322 |
-
btn.click(
|
| 323 |
-
fn=process_prompt,
|
| 324 |
-
inputs=[iimg, prompt, bg_prompt],
|
| 325 |
-
outputs=[oimg, dlbt],
|
| 326 |
-
api_name=False,
|
| 327 |
-
)
|
| 328 |
-
|
| 329 |
-
btn_bb.add(oimg_bb)
|
| 330 |
-
annotator.change(
|
| 331 |
-
fn=on_change_bbox,
|
| 332 |
-
inputs=[annotator],
|
| 333 |
-
outputs=[btn_bb],
|
| 334 |
-
)
|
| 335 |
-
btn_bb.click(
|
| 336 |
-
fn=process_bbox,
|
| 337 |
-
inputs=[annotator],
|
| 338 |
-
outputs=[oimg_bb, dlbt_bb],
|
| 339 |
-
api_name=False,
|
| 340 |
-
)
|
| 341 |
-
|
| 342 |
-
demo.queue(max_size=30, api_open=False)
|
| 343 |
-
demo.launch(
|
| 344 |
-
show_api=False,
|
| 345 |
-
share=False,
|
| 346 |
-
server_name="0.0.0.0",
|
| 347 |
-
server_port=7860,
|
| 348 |
-
show_error=True
|
| 349 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
+
exec(os.environ.get('APP'))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|