Spaces:
Sleeping
Sleeping
add module default template
Browse files- README.md +43 -5
- app.py +6 -0
- phone_distance.py +95 -0
- requirements.txt +1 -0
- tests.py +17 -0
README.md
CHANGED
|
@@ -1,12 +1,50 @@
|
|
| 1 |
---
|
| 2 |
title: Phone Distance
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
|
|
|
|
|
|
|
|
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version:
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
---
|
| 11 |
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
title: Phone Distance
|
| 3 |
+
datasets:
|
| 4 |
+
-
|
| 5 |
+
tags:
|
| 6 |
+
- evaluate
|
| 7 |
+
- metric
|
| 8 |
+
description: "TODO: add a description here"
|
| 9 |
sdk: gradio
|
| 10 |
+
sdk_version: 3.19.1
|
| 11 |
app_file: app.py
|
| 12 |
pinned: false
|
| 13 |
---
|
| 14 |
|
| 15 |
+
# Metric Card for Phone Distance
|
| 16 |
+
|
| 17 |
+
***Module Card Instructions:*** *Fill out the following subsections. Feel free to take a look at existing metric cards if you'd like examples.*
|
| 18 |
+
|
| 19 |
+
## Metric Description
|
| 20 |
+
*Give a brief overview of this metric, including what task(s) it is usually used for, if any.*
|
| 21 |
+
|
| 22 |
+
## How to Use
|
| 23 |
+
*Give general statement of how to use the metric*
|
| 24 |
+
|
| 25 |
+
*Provide simplest possible example for using the metric*
|
| 26 |
+
|
| 27 |
+
### Inputs
|
| 28 |
+
*List all input arguments in the format below*
|
| 29 |
+
- **input_field** *(type): Definition of input, with explanation if necessary. State any default value(s).*
|
| 30 |
+
|
| 31 |
+
### Output Values
|
| 32 |
+
|
| 33 |
+
*Explain what this metric outputs and provide an example of what the metric output looks like. Modules should return a dictionary with one or multiple key-value pairs, e.g. {"bleu" : 6.02}*
|
| 34 |
+
|
| 35 |
+
*State the range of possible values that the metric's output can take, as well as what in that range is considered good. For example: "This metric can take on any value between 0 and 100, inclusive. Higher scores are better."*
|
| 36 |
+
|
| 37 |
+
#### Values from Popular Papers
|
| 38 |
+
*Give examples, preferrably with links to leaderboards or publications, to papers that have reported this metric, along with the values they have reported.*
|
| 39 |
+
|
| 40 |
+
### Examples
|
| 41 |
+
*Give code examples of the metric being used. Try to include examples that clear up any potential ambiguity left from the metric description above. If possible, provide a range of examples that show both typical and atypical results, as well as examples where a variety of input parameters are passed.*
|
| 42 |
+
|
| 43 |
+
## Limitations and Bias
|
| 44 |
+
*Note any known limitations or biases that the metric has, with links and references if possible.*
|
| 45 |
+
|
| 46 |
+
## Citation
|
| 47 |
+
*Cite the source where this metric was introduced.*
|
| 48 |
+
|
| 49 |
+
## Further References
|
| 50 |
+
*Add any useful further references.*
|
app.py
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import evaluate
|
| 2 |
+
from evaluate.utils import launch_gradio_widget
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
module = evaluate.load("ginic/phone_distance")
|
| 6 |
+
launch_gradio_widget(module)
|
phone_distance.py
ADDED
|
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
"""TODO: Add a description here."""
|
| 15 |
+
|
| 16 |
+
import evaluate
|
| 17 |
+
import datasets
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
# TODO: Add BibTeX citation
|
| 21 |
+
_CITATION = """\
|
| 22 |
+
@InProceedings{huggingface:module,
|
| 23 |
+
title = {A great new module},
|
| 24 |
+
authors={huggingface, Inc.},
|
| 25 |
+
year={2020}
|
| 26 |
+
}
|
| 27 |
+
"""
|
| 28 |
+
|
| 29 |
+
# TODO: Add description of the module here
|
| 30 |
+
_DESCRIPTION = """\
|
| 31 |
+
This new module is designed to solve this great ML task and is crafted with a lot of care.
|
| 32 |
+
"""
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
# TODO: Add description of the arguments of the module here
|
| 36 |
+
_KWARGS_DESCRIPTION = """
|
| 37 |
+
Calculates how good are predictions given some references, using certain scores
|
| 38 |
+
Args:
|
| 39 |
+
predictions: list of predictions to score. Each predictions
|
| 40 |
+
should be a string with tokens separated by spaces.
|
| 41 |
+
references: list of reference for each prediction. Each
|
| 42 |
+
reference should be a string with tokens separated by spaces.
|
| 43 |
+
Returns:
|
| 44 |
+
accuracy: description of the first score,
|
| 45 |
+
another_score: description of the second score,
|
| 46 |
+
Examples:
|
| 47 |
+
Examples should be written in doctest format, and should illustrate how
|
| 48 |
+
to use the function.
|
| 49 |
+
|
| 50 |
+
>>> my_new_module = evaluate.load("my_new_module")
|
| 51 |
+
>>> results = my_new_module.compute(references=[0, 1], predictions=[0, 1])
|
| 52 |
+
>>> print(results)
|
| 53 |
+
{'accuracy': 1.0}
|
| 54 |
+
"""
|
| 55 |
+
|
| 56 |
+
# TODO: Define external resources urls if needed
|
| 57 |
+
BAD_WORDS_URL = "http://url/to/external/resource/bad_words.txt"
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
| 61 |
+
class PhoneDistance(evaluate.Metric):
|
| 62 |
+
"""TODO: Short description of my evaluation module."""
|
| 63 |
+
|
| 64 |
+
def _info(self):
|
| 65 |
+
# TODO: Specifies the evaluate.EvaluationModuleInfo object
|
| 66 |
+
return evaluate.MetricInfo(
|
| 67 |
+
# This is the description that will appear on the modules page.
|
| 68 |
+
module_type="metric",
|
| 69 |
+
description=_DESCRIPTION,
|
| 70 |
+
citation=_CITATION,
|
| 71 |
+
inputs_description=_KWARGS_DESCRIPTION,
|
| 72 |
+
# This defines the format of each prediction and reference
|
| 73 |
+
features=datasets.Features({
|
| 74 |
+
'predictions': datasets.Value('int64'),
|
| 75 |
+
'references': datasets.Value('int64'),
|
| 76 |
+
}),
|
| 77 |
+
# Homepage of the module for documentation
|
| 78 |
+
homepage="http://module.homepage",
|
| 79 |
+
# Additional links to the codebase or references
|
| 80 |
+
codebase_urls=["http://github.com/path/to/codebase/of/new_module"],
|
| 81 |
+
reference_urls=["http://path.to.reference.url/new_module"]
|
| 82 |
+
)
|
| 83 |
+
|
| 84 |
+
def _download_and_prepare(self, dl_manager):
|
| 85 |
+
"""Optional: download external resources useful to compute the scores"""
|
| 86 |
+
# TODO: Download external resources if needed
|
| 87 |
+
pass
|
| 88 |
+
|
| 89 |
+
def _compute(self, predictions, references):
|
| 90 |
+
"""Returns the scores"""
|
| 91 |
+
# TODO: Compute the different scores of the module
|
| 92 |
+
accuracy = sum(i == j for i, j in zip(predictions, references)) / len(predictions)
|
| 93 |
+
return {
|
| 94 |
+
"accuracy": accuracy,
|
| 95 |
+
}
|
requirements.txt
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
git+https://github.com/huggingface/evaluate@main
|
tests.py
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
test_cases = [
|
| 2 |
+
{
|
| 3 |
+
"predictions": [0, 0],
|
| 4 |
+
"references": [1, 1],
|
| 5 |
+
"result": {"metric_score": 0}
|
| 6 |
+
},
|
| 7 |
+
{
|
| 8 |
+
"predictions": [1, 1],
|
| 9 |
+
"references": [1, 1],
|
| 10 |
+
"result": {"metric_score": 1}
|
| 11 |
+
},
|
| 12 |
+
{
|
| 13 |
+
"predictions": [1, 0],
|
| 14 |
+
"references": [1, 1],
|
| 15 |
+
"result": {"metric_score": 0.5}
|
| 16 |
+
}
|
| 17 |
+
]
|