Spaces:
Runtime error
Runtime error
import streamlit as st | |
import json | |
from urllib.request import urlopen | |
from thefuzz import fuzz | |
from itertools import combinations | |
from keras_transformer import get_model, decode | |
#################################################################################################### | |
# FUNCTIONS | |
def search_fit(word, data, threshold=50, fraction=2/3): | |
# Esta función se puede usar para n palabras, basta con quitar los espacios | |
# entre palabras | |
target = '' | |
original = '' | |
best_score = 0 | |
for item in data.keys(): | |
for i in range(len(data[item])): | |
data_item = data[item][i].replace(' ', '') | |
score = fuzz.ratio(word, data_item) | |
if score>best_score and score>=threshold and len(data_item)>=fraction*len(word) and len(data_item)<=len(word)/fraction: | |
best_score = score | |
target = item | |
original = data_item | |
return target, best_score, original | |
def find_longest_phrase(data): | |
biggest_len = max([max([len(data[item][i].split()) for i in range(len(data[item]))]) for item in data.keys()]) | |
return biggest_len | |
def create_tuples(sample_list, tuple_size): | |
tuple_list = [tuple([i+j for j in range(tuple_size)]) \ | |
for i in range(len(sample_list)-tuple_size+1)] | |
#print(tuple_list) | |
return tuple_list | |
# OJO: CAMBIAR LA FUNCION COMBINATION POR ALGO QUE HAGA PERMUTACIONES CICLICAS | |
def make_translation(transcription, data, threshold=50, fraction=2/3): | |
# To set limits for comparison size | |
data_len = find_longest_phrase(data) | |
transcription_len = len(transcription.split()) | |
biggest_len = min(data_len, transcription_len) | |
# To get the best translation given a phrase | |
index_transcription = list(range(transcription_len)) | |
index_translation = list(range(transcription_len)) | |
translation_dict = {} | |
translation = transcription#.copy() | |
transcription_split = transcription.split() | |
for i in range(1, 0, -1): | |
# Match comparisons | |
if i>1: | |
translation_dict.update({combination: search_fit(''.join(transcription_split[combination[0]:combination[-1]+1]), data, threshold, fraction) for combination in create_tuples(transcription_split, i)}) | |
else: | |
translation_dict.update({combination: search_fit(transcription_split[combination[0]], data, threshold, fraction) for combination in create_tuples(transcription_split, i)}) | |
# Get the best translation priorizing the longest phrases | |
for combination in create_tuples(transcription_split, i): # AQUI SE PUEDE MEJORAR LA BÚSQUEDA, PRIORIZANDO POR MAYOR SCORE EN LUGAR DE POR ORDEN SECUENCIAL | |
clear_index = min([1*(item in index_translation) for item in combination]) # 1 if all indexes are free | |
if clear_index and i>1 and translation_dict[combination][1]>threshold: | |
taken = False | |
translation_split = translation.split() | |
for number, word in enumerate(translation_split): | |
if number in combination: | |
if not taken: | |
if len(translation_dict[combination][0].split())>1: | |
translation_split[number] = '-'.join(translation_dict[combination][0]) | |
else: | |
translation_split[number] = translation_dict[combination][0] | |
taken = True | |
else: | |
translation_split[number] = '<>' | |
translation = ' '.join(translation_split) | |
index_translation = [item if item not in combination else 0 for item in index_translation] | |
elif index_translation[combination[0]]!=0 and i==1 and translation_dict[combination][1]>threshold: | |
taken = False | |
translation_split = translation.split() | |
for number, word in enumerate(translation_split): | |
if number in combination: | |
if not taken: | |
if len(translation_dict[combination][0].split())>1: | |
translation_split[number] = '-'.join(translation_dict[combination][0]) | |
else: | |
translation_split[number] = translation_dict[combination][0] | |
taken = True | |
else: | |
translation_split[number] = '<>' | |
translation = ' '.join(translation_split) | |
index_translation = [item if item not in combination else 0 for item in index_translation] | |
return translation.replace('-', ' ').replace('<>', '').replace(' ', ' ').replace(' ', ' ').strip() | |
def remover(my_string = ""): | |
for item in my_string: | |
if item not in values: | |
my_string = my_string.replace(item, "") | |
return my_string | |
def translate(oracion, model): | |
sentence = oracion[:] # make_translation(oracion.strip().lower(), dictionary, threshold=90, fraction=4/5) # | |
sentence_tokens = [tokens + ['<END>', '<PAD>'] for tokens in [sentence.split(' ')]] | |
tr_input = [list(map(lambda x: source_token_dict[x] if x in source_token_dict.keys() else source_token_dict['<UNK>'], tokens)) for tokens in sentence_tokens][0] | |
decoded = decode( | |
model, | |
tr_input, | |
start_token = target_token_dict['<START>'], | |
end_token = target_token_dict['<END>'], | |
pad_token = target_token_dict['<PAD>'] | |
) | |
return ' '.join(map(lambda x: target_token_dict_inv[x], decoded[1:-1])) | |
#################################################################################################### | |
# MAIN APP | |
path_dict = 'https://huggingface.co/spaces/gilesitorr/Nahuatl2Spanish/raw/main/Dictionaries/' | |
response = urlopen(path_dict+'uncased_tokens_pretrained.json') | |
source_token_dict = json.loads(response.read()) | |
target_token_dict = source_token_dict.copy() | |
response = urlopen(path_dict+'uncased_tokens_inv_pretrained.json') | |
target_token_dict_inv = json.loads(response.read()) | |
target_token_dict_inv = {int(k): v for k,v in target_token_dict_inv.items()} | |
response = urlopen(path_dict+'nah_es.json') | |
dictionary = json.loads(response.read()) | |
model = get_model( | |
token_num = max(len(source_token_dict),len(target_token_dict)), | |
embed_dim = 256, | |
encoder_num = 2, | |
decoder_num = 2, | |
head_num = 32, | |
hidden_dim = 2048, | |
dropout_rate = 0.1, | |
use_same_embed = False, | |
) | |
from keras.utils.data_utils import get_file | |
path_model = 'https://huggingface.co/spaces/gilesitorr/Nahuatl2Spanish/resolve/main/Models/' | |
filename = path_model+'uncased_translator_nahuatl2espanol+hybrid.h5' | |
weights_path = get_file( | |
'.././model.h5', | |
filename) | |
model.load_weights(weights_path) | |
values = list("abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 ") | |
text = st.text_area('Escriba una frase a traducir: ') | |
if text: | |
out = translate(remover(text.lower()), model) | |
st.text(out) |