mistral_AES / app.py
gildead's picture
Update app.py
0cae964 verified
from huggingface_hub import InferenceClient
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, AutoModel
from peft import PeftModel
import torch
# load base model
base_model = "mistralai/Mistral-7B-Instruct-v0.1"
#bnb_config = BitsAndBytesConfig(
# load_in_4bit= True,
# bnb_4bit_quant_type= "nf4",
# bnb_4bit_compute_dtype= torch.bfloat16,
# bnb_4bit_use_double_quant= False,
#)
model = AutoModelForCausalLM.from_pretrained(
base_model,
# quantization_config=bnb_config,
torch_dtype=torch.bfloat16,
device_map="auto",
trust_remote_code=True,
)
model.config.use_cache = True # silence the warnings. Please re-enable for inference!
model.config.pretraining_tp = 1
model.gradient_checkpointing_enable()
# load fine-tuned model
ft_model = PeftModel.from_pretrained(model, "gildead/mistral_7b_AES_v2_epoch")
ft_model.eval()
# load tokenizer
tokenizer = AutoTokenizer.from_pretrained(ft_model, trust_remote_code=True)
prompt = "How do I find true love?"
pipe = pipeline(task="text-generation", model=model, tokenizer=tokenizer, max_length=3500)
result = pipe(f"<s>[INST] {prompt} [/INST]", max_new_tokens=7)
print(result[0]['generated_text'])
def format_prompt(message, history):
prompt = "<s>"
for user_prompt, bot_response in history:
prompt += f"[INST] {user_prompt} [/INST]"
prompt += f" {bot_response}</s> "
prompt += f"[INST] {message} [/INST]"
return prompt
def generate(
prompt, history, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0,
):
temperature = float(temperature)
if temperature < 1e-2:
temperature = 1e-2
top_p = float(top_p)
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True,
seed=42,
)
formatted_prompt = format_prompt(prompt, history)
stream = pipe(f"<s>[INST] {prompt} [/INST]")
output = ""
for response in stream:
output += response.token.text
yield output
return output
additional_inputs=[
gr.Slider(
label="Temperature",
value=0.9,
minimum=0.0,
maximum=1.0,
step=0.05,
interactive=True,
info="Higher values produce more diverse outputs",
),
gr.Slider(
label="Max new tokens",
value=256,
minimum=0,
maximum=1048,
step=64,
interactive=True,
info="The maximum numbers of new tokens",
),
gr.Slider(
label="Top-p (nucleus sampling)",
value=0.90,
minimum=0.0,
maximum=1,
step=0.05,
interactive=True,
info="Higher values sample more low-probability tokens",
),
gr.Slider(
label="Repetition penalty",
value=1.2,
minimum=1.0,
maximum=2.0,
step=0.05,
interactive=True,
info="Penalize repeated tokens",
)
]
css = """
#mkd {
height: 500px;
overflow: auto;
border: 1px solid #ccc;
}
"""
with gr.Blocks(css=css) as demo:
gr.HTML("<h1><center>Mistral 7B Instruct<h1><center>")
gr.HTML("<h3><center>In this demo, you can chat with <a href='https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1'>Mistral-7B-Instruct</a> model. πŸ’¬<h3><center>")
gr.HTML("<h3><center>Learn more about the model <a href='https://huggingface.co/docs/transformers/main/model_doc/mistral'>here</a>. πŸ“š<h3><center>")
gr.ChatInterface(
generate,
additional_inputs=additional_inputs,
examples=[["What is the secret to life?"], ["Write me a recipe for pancakes."]]
)
demo.queue(max_size=100).launch(max_threads=75,debug=True)