Gijs Wijngaard commited on
Commit
27a9c0b
·
1 Parent(s): c560ddc
Files changed (2) hide show
  1. app.py +80 -4
  2. requirements.txt +6 -0
app.py CHANGED
@@ -1,7 +1,83 @@
1
  import gradio as gr
 
 
 
2
 
3
- def greet(name):
4
- return "Hello " + name + "!!"
5
 
6
- demo = gr.Interface(fn=greet, inputs="text", outputs="text")
7
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
+ import soundfile as sf
3
+ import torch
4
+ from transformers import Qwen2_5OmniForConditionalGeneration, Qwen2_5OmniProcessor
5
 
 
 
6
 
7
+ MODEL_ID = "Qwen/Qwen2.5-Omni-7B" if False else "Qwen/Qwen2.5-Omni-7B" # keep explicit string
8
+
9
+ model = Qwen2_5OmniForConditionalGeneration.from_pretrained(
10
+ MODEL_ID,
11
+ torch_dtype="auto",
12
+ device_map="auto",
13
+ )
14
+ model.disable_talker()
15
+
16
+ processor = Qwen2_5OmniProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
17
+
18
+
19
+ def run_omni(audio_path: str, instruction: str, max_tokens: int = 512) -> str:
20
+ if not audio_path:
21
+ return "Please upload an audio file."
22
+
23
+ system_text = (
24
+ "You are Qwen, a virtual human developed by the Qwen Team, Alibaba Group, "
25
+ "capable of perceiving auditory and visual inputs, as well as generating text and speech."
26
+ )
27
+ conversation = [
28
+ {
29
+ "role": "system",
30
+ "content": [{"type": "text", "text": system_text}],
31
+ },
32
+ {
33
+ "role": "user",
34
+ "content": [
35
+ {"type": "audio", "audio_url": audio_path},
36
+ {"type": "text", "text": instruction},
37
+ ],
38
+ },
39
+ ]
40
+
41
+ text = processor.apply_chat_template(conversation, add_generation_prompt=True, tokenize=False)
42
+
43
+ audio, sr = sf.read(audio_path)
44
+ audios = [(audio, sr)]
45
+
46
+ inputs = processor(
47
+ text=text,
48
+ audio=audios,
49
+ images=[],
50
+ videos=[],
51
+ return_tensors="pt",
52
+ padding=True,
53
+ )
54
+ inputs = inputs.to(model.device)
55
+
56
+ output_ids = model.generate(**inputs, max_new_tokens=int(max_tokens))
57
+ response = processor.batch_decode(
58
+ output_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False
59
+ )[0]
60
+ return response
61
+
62
+
63
+ with gr.Blocks(title="Qwen2.5 Omni (Audio) Demo") as demo:
64
+ gr.Markdown("# Qwen2.5-Omni (Audio) Demo")
65
+ gr.Markdown("Upload an audio file and provide an instruction for the model.")
66
+
67
+ with gr.Row():
68
+ with gr.Column():
69
+ audio_input = gr.Audio(type="filepath", label="Upload Audio")
70
+ instruction = gr.Textbox(
71
+ label="Instruction",
72
+ value="Transcribe the audio, then summarize it in one sentence.",
73
+ )
74
+ max_tokens = gr.Slider(128, 2048, value=512, step=64, label="Max Output Tokens")
75
+ submit_btn = gr.Button("Run", variant="primary")
76
+ with gr.Column():
77
+ output_text = gr.Textbox(label="Response", lines=14)
78
+
79
+ submit_btn.click(run_omni, [audio_input, instruction, max_tokens], output_text)
80
+
81
+
82
+ if __name__ == "__main__":
83
+ demo.queue().launch(share=False, ssr_mode=False)
requirements.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ gradio>=4.0.0
2
+ torch>=2.1.0
3
+ transformers>=4.43.0
4
+ accelerate>=0.30.0
5
+ soundfile>=0.12.1
6
+